DOI: 10.17586/1023-5086-2026-93-03-33-39
УДК: 535.015
Second-order nonlinear susceptibility hysteresis in silicon bulk crystal
Ларин А.О., Ермина А.А., Жарова Ю.А., Зуев Д.А. Гистерезис нелинейной восприимчивости второго порядка в кремнии // Оптический журнал. 2026. Т. 93. № 3. С. 33–39. http://doi.org/10.17586/1023-5086-2026-93-03-33-39
Larin A.O., Ermina A.A., Zharova Yu.A., Zuev D.A. Second-order nonlinear susceptibility hysteresis in silicon bulk crystal [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 3. P. 33–39. http://doi.org/10.17586/1023-5086-2026-93-03-33-39
Subject of the study. Effect of electrically induced second harmonic generation in single-crystal silicon with gold nanoparticles on the surface. Aim of study. Creation of hybrid nanostructures based on monocrystalline silicon with gold nanoparticles on the semiconductor surface and demonstration of optical hysteresis during the generation of the second harmonic from silicon in the absence and presence of metal nanoparticles supporting plasmon resonance. Method. Confocal laser scanning
spectroscopy of second harmonic generation with a source of femtosecond laser pulses at a wavelength
of 1047 nm. Main results. Hybrid nanostructures based on single-crystal silicon with gold nanoparticles
on the semiconductor surface were created, an amplification of the second harmonic signal and the
manifestation of a hysteresis loop in the graph of the dependence of the second harmonic generation
signal intensity on the excitation power were detected, scattering spectra from the studied structures
were obtained. Practical significance. An array of hybrid nanostructures can be used as an element
with the effect of optical non-volatile memory.
second harmonic generation, silicon, surface traps, memory effect, hysteresis
OCIS codes: 210.4680, 190.0190, 190.2620
References:- Youngblood N., Rios Ocampo C.A., et al. Integrated optical memristors // Nature Photon. 2023. V. 17. № 7. P. 561–572. https://doi.org/10.1038/s41566-023-01217-w
- Форш П.А., Стремоухов С.Ю., Фролова А.С. и др. Квантовые мемристоры — новый подход к нейроморфным вычислениям // УФН. 2024. Т. 194. № 9. С. 905–916. https://doi.org/10.3367/UFNr.2024.06.039698
- Forsh P.A., Stremoukhov S.Yu., Frolova A.S., et al. Quantum memristors: A new approach to neuromorphic computing // Physics-Uspekhi. 2024. V. 67. № 9. P. 855–865. https://doi.org/10.3367/UFNe.2024.06.039698
- Karabchevsky A., Katiyi A., Ang A.S., et al. On-chip nanophotonics and future challenges (Active and Passive) // Nanophotonics. 2020. V. 9. № 12. P. 3733–3753. https://doi.org/10.1515/nanoph-2020-0204
- Girtan M. Is photonics the new electronics? // Materials Today. 2014. V. 17. № 3. P. 100–101. https://doi.org/10.1016/j.mattod.2014.03.003
- Parra J., Olivares I., Brimont A., et al. Toward nonvolatile switching in silicon photonic devices // Laser & Photon. Rev. 2021. V. 15. № 6. P. 2000501. https://doi.org/10.1002/lpor.202000501
- Pavesi L. Thirty years in silicon photonics: A personal view // Frontiers in Phys. 2021. V. 9. P. 786028. https://doi.org/10.3389/fphy.2021.786028
- Li R., Gong Y., Huang H., et al. Photonics for neuromorphic computing: Fundamentals, devices, and opportunities // Adv. Mater. 2025. V. 37. № 2. P. 2312825. https://doi.org/10.1002/adma.202312825
- Marunchenko A., Kumar J., Kiligaridis A., et al. Memlumor: A luminescent memory device for energy-efficient photonic neuromorphic computing // ACS Energy Lett. 2024. V. 9. № 5. P. 2075–2082. https://doi.org/10.1021/acsenergylett.4c00691
- Amiri S., Miri M. Ultra-fast GST-based optical neuron for the implementation of integrated photonic neural networks // Opt. Continuum. 2024. V. 3. № 7. P. 1061–1080. https://doi.org/10.1364/OPTCON.526057
- Wen Y., Cao Y., Ren H., et al. Ferroelectric optical memristors enabled by non-volatile electro-optic effect // Adv. Mater. 2025. P. 2417658. https://doi.org/10.1002/adma.202417658
- Sun Y., Larin A., Mozharov A., et al. All-optical generation of static electric field in a single metal-semiconductor nanoantenna // Light: Sci. & Applications. 2023. V. 12. № 1. P. 237. https://doi.org/10.1038/s41377-023-01262-8
- Aktsipetrov O.A., Fedyanin A.A., Mishina E.D., et al. dc-electric-field-induced second-harmonic generation in Si (111)-SiO₂-Cr metal-oxide-semiconductor structures // Phys. Rev. B. 1996. V. 54. № 3. P. 1825–1832. https://doi.org/10.1103/PhysRevB.54.1825
- Winau D., Koch R., Führmann A., et al. Film growth studies with intrinsic stress measurement: Polycrystalline and epitaxial Ag, Cu, and Au films on mica (001) // J. Appl. Phys. 1991. V. 70. № 6. P. 3081–3087. https://doi.org/10.1063/1.349313
- He X., Liu S., Li S., et al. Si/Au hybrid nanoparticles with highly efficient nonlinear optical emission: Implication for nanoscale white light sources // ACS Appl. Nano Mater. 2022. V. 5. № 8. P. 10676–10685. https://doi.org/10.1021/acsanm.2c01982
- Mihaychuk J.G., Bloch J., Liu Y., et al. Time-dependent second-harmonic generation from the Si-SiO₂ interface induced by charge transfer // Opt. Lett. 1995. V. 20. № 20. P. 2063–2065. https://doi.org/10.1364/OL.20.002063
- Gavrilenko V.I., Rebentrost F. Nonlinear optical susceptibility of the surfaces of silicon and diamond // Surface Sci. 1995. V. 331. P. 1355–1360. https://doi.org/10.1016/0039-6028(95)00296-0
- Wynne J.J. Optical third-order mixing in GaAs, Ge, Si, and InAs // Phys. Rev. 1969. V. 178. № 3. P. 1295–1303. https://doi.org/10.1103/PhysRev.178.1295
ru