ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-03-33-39

УДК: 535.015

Second-order nonlinear susceptibility hysteresis in silicon bulk crystal

For Russian citation (Opticheskii Zhurnal):

Ларин А.О., Ермина А.А., Жарова Ю.А., Зуев Д.А. Гистерезис нелинейной восприимчивости второго порядка в кремнии // Оптический журнал. 2026. Т. 93. № 3. С. 33–39. http://doi.org/10.17586/1023-5086-2026-93-03-33-39

Larin A.O., Ermina A.A., Zharova Yu.A., Zuev D.A. Second-order nonlinear susceptibility hysteresis in silicon bulk crystal [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 3. P. 33–39. http://doi.org/10.17586/1023-5086-2026-93-03-33-39

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. Effect of electrically induced second harmonic generation in single-crystal silicon with gold nanoparticles on the surface. Aim of study. Creation of hybrid nanostructures based on monocrystalline silicon with gold nanoparticles on the semiconductor surface and demonstration of optical hysteresis during the generation of the second harmonic from silicon in the absence and presence of metal nanoparticles supporting plasmon resonance. Method. Confocal laser scanning 
spectroscopy of second harmonic generation with a source of femtosecond laser pulses at a wavelength 
of 1047 nm. Main results. Hybrid nanostructures based on single-crystal silicon with gold nanoparticles 
on the semiconductor surface were created, an amplification of the second harmonic signal and the 
manifestation of a hysteresis loop in the graph of the dependence of the second harmonic generation 
signal intensity on the excitation power were detected, scattering spectra from the studied structures 
were obtained. Practical significance. An array of hybrid nanostructures can be used as an element 
with the effect of optical non-volatile memory.

Keywords:

second harmonic generation, silicon, surface traps, memory effect, hysteresis

OCIS codes: 210.4680, 190.0190, 190.2620

References:
  1. Youngblood N., Rios Ocampo C.A., et al. Integrated optical memristors // Nature Photon. 2023. V. 17. № 7. P. 561–572. https://doi.org/10.1038/s41566-023-01217-w
  2. Форш П.А., Стремоухов С.Ю., Фролова А.С. и др. Квантовые мемристоры — новый подход к нейроморфным вычислениям // УФН. 2024. Т. 194. № 9. С. 905–916. https://doi.org/10.3367/UFNr.2024.06.039698
  • Forsh P.A., Stremoukhov S.Yu., Frolova A.S., et al. Quantum memristors: A new approach to neuromorphic computing // Physics-Uspekhi. 2024. V. 67. № 9. P. 855–865. https://doi.org/10.3367/UFNe.2024.06.039698
    1. Karabchevsky A., Katiyi A., Ang A.S., et al. On-chip nanophotonics and future challenges (Active and Passive) // Nanophotonics. 2020. V. 9. № 12. P. 3733–3753. https://doi.org/10.1515/nanoph-2020-0204
    2. Girtan M. Is photonics the new electronics? // Materials Today. 2014. V. 17. № 3. P. 100–101. https://doi.org/10.1016/j.mattod.2014.03.003
    3. Parra J., Olivares I., Brimont A., et al. Toward nonvolatile switching in silicon photonic devices // Laser & Photon. Rev. 2021. V. 15. № 6. P. 2000501. https://doi.org/10.1002/lpor.202000501
    4. Pavesi L. Thirty years in silicon photonics: A personal view // Frontiers in Phys. 2021. V. 9. P. 786028. https://doi.org/10.3389/fphy.2021.786028
    5. Li R., Gong Y., Huang H., et al. Photonics for neuromorphic computing: Fundamentals, devices, and opportunities // Adv. Mater. 2025. V. 37. № 2. P. 2312825. https://doi.org/10.1002/adma.202312825
    6. Marunchenko A., Kumar J., Kiligaridis A., et al. Memlumor: A luminescent memory device for energy-efficient photonic neuromorphic computing // ACS Energy Lett. 2024. V. 9. № 5. P. 2075–2082. https://doi.org/10.1021/acsenergylett.4c00691
    7. Amiri S., Miri M. Ultra-fast GST-based optical neuron for the implementation of integrated photonic neural networks // Opt. Continuum. 2024. V. 3. № 7. P. 1061–1080. https://doi.org/10.1364/OPTCON.526057
    8. Wen Y., Cao Y., Ren H., et al. Ferroelectric optical memristors enabled by non-volatile electro-optic effect // Adv. Mater. 2025. P. 2417658. https://doi.org/10.1002/adma.202417658
    9. Sun Y., Larin A., Mozharov A., et al. All-optical generation of static electric field in a single metal-semiconductor nanoantenna // Light: Sci. & Applications. 2023. V. 12. № 1. P. 237. https://doi.org/10.1038/s41377-023-01262-8
    10. Aktsipetrov O.A., Fedyanin A.A., Mishina E.D., et al. dc-electric-field-induced second-harmonic generation in Si (111)-SiO₂-Cr metal-oxide-semiconductor structures // Phys. Rev. B. 1996. V. 54. № 3. P. 1825–1832. https://doi.org/10.1103/PhysRevB.54.1825
    11. Winau D., Koch R., Führmann A., et al. Film growth studies with intrinsic stress measurement: Polycrystalline and epitaxial Ag, Cu, and Au films on mica (001) // J. Appl. Phys. 1991. V. 70. № 6. P. 3081–3087. https://doi.org/10.1063/1.349313
    12. He X., Liu S., Li S., et al. Si/Au hybrid nanoparticles with highly efficient nonlinear optical emission: Implication for nanoscale white light sources // ACS Appl. Nano Mater. 2022. V. 5. № 8. P. 10676–10685. https://doi.org/10.1021/acsanm.2c01982
    13. Mihaychuk J.G., Bloch J., Liu Y., et al. Time-dependent second-harmonic generation from the Si-SiO₂ interface induced by charge transfer // Opt. Lett. 1995. V. 20. № 20. P. 2063–2065. https://doi.org/10.1364/OL.20.002063
    14. Gavrilenko V.I., Rebentrost F. Nonlinear optical susceptibility of the surfaces of silicon and diamond // Surface Sci. 1995. V. 331. P. 1355–1360. https://doi.org/10.1016/0039-6028(95)00296-0