ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-03-4-14

УДК: 535.44

Generation of vector optical vortices in a Mach–Zehnder polarization interferometer

For Russian citation (Opticheskii Zhurnal):

Решетников Д.Д., Павелина М.Е., Рыжая А.А., Малютина Е.В., Севрюгин А.А., Вашукевич Е.А., Петров В.М., Венедиктов В.Ю. Генерация векторных оптических вихрей в поляризационном интерферометре Маха–Цендера // Оптический журнал. 2026. Т. 93. № 3. С. 4–14. http://doi.org/10.17586/1023-5086-2026-93-03-4-14

Reshetnikov D.D., Pavelina M.E., Ryzhaya A.A., Malyutina E.V., Sevryugin A.A., Vashukevich E.A., Petrov V.M., Venediktov V.Yu. Generation of vector optical vortices in a Mach–Zehnder polarization interferometer [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 3. P. 4–14. http://doi.org/10.17586/1023-5086-2026-93-03-4-14

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Vector optical vortices generation in a Mach–Zehnder polarization interferometer. Aim of the study. The development of methods for the generation of vector and scalar optical vortices using a modified Mach–Zehnder polarization interferometer. Experimental study of the polarization interferometer system with cube corner reflectors is described, as well as the theoretical description of polarization transformations within this device using the Jones matrix formalism. Method. A modified scheme of the Mach–Zehnder polarization interferometer has been used to generate both scalar and vector optical vortices. The orbital angular momentum of these optical vortices has been determined by observing the interference pattern of its interference with a reference Gaussian beam. Main results. As a result of this work, the possibility of scalar vortices with orbital angular momentum ±1 and vector optical vortices with axisymmetric polarization structures has been demonstrated. A theoretical description of polarization transformations in an interferometer setup using the Jones formalism has also been provided. Practical significance. The states produced in the polarization interferometer setup can be utilized to encode information for quantum communication, quantum cryptography, and satellite-based optical data transmission systems. The optical circuit’s configuration is highly adaptable and enables the generation of vortex beams with diverse parameters, which is significant for high-bandwidth communication applications.

Keywords:

structured light, optical vortex, retroreflectors, cubic corner reflectors, polarization of light, polarization interferometer, far field, far field diffraction pattern

OCIS codes: 110.0110, 260.3160, 3000.30970

References:
  1. Allen L., Beijersbergen M.W., Spreeuw R.J.C., et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes // Phys. Rev. A. 1992. V. 45. P. 8185–8189. http://doi.org/10.1103/PhysRevA.45.8185
  2. Soskin M.S., Vasnetsov M.V. Singular optics // Progress in Optics. 2001. V. 42. P. 219–276. http://doi.org/10.1016/S0079-6638(01)80018-4
  3. Zhan Q. Cylindrical vector beams: From mathematical concepts to applications // Adv. Opt. Photon. 2009. V. 1. № 1. P. 1–57. http://doi.org/10.1364/AOP.1.000001
  4. Dorn R., Quabis S., Leuchs G. Sharper focus for a radially polarized light beam // Phys. Rev. Lett. 2003. V. 91. № 23. P. 233901. http://doi.org/10.1103/PhysRevLett.91.233901
  5. Tidwell S.C., Kimura W.D., Robert C.G. Generating radially polarized beams interferometrically // Appl. Opt. 1990. V. 29. № 15. P. 2234–2239. http://doi.org/10.1364/AO.29.002234
  6. Bomzon Z., Kleiner V., Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings // Opt. Lett. 2002. V. 27. № 5. P. 285–287. http://doi.org/10.1364/OL.27.000285
  7. Marrucci L., Manzo C., Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media // Phys. Rev. Lett. 2006. V. 96. № 16. P. 163905. http://doi.org/10.1103/PhysRevLett.96.163905
  8. Wang X.-L., Ding J., Ni W.-J., et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement // Opt. Lett. 2007. V. 32. № 24. P. 3549–3551. http://doi.org/10.1364/OL.32.003549
  9. Toussaint K.C., Park J., Gil D.J., et al. Polarization-based diffractive optical elements for the generation of vector beams // Opt. Lett. 2005. V. 30. № 21. P. 2846–2848. http://doi.org/10.1364/OL.30.002846
  10. Решетников Д.Д., Рыжая А.А., Павелина М.Е. и др. Интерферометр Маха–Цендера на основе уголковых отражателей и пучки с управляемой поляризационной структурой // Оптический журнал. 2025. Т. 92. № 3. С. 58–67. http://doi.org/10.17586/1023-5086-2025-92-03-58-67
  • Reshetnikov D.D., Ryzhaya A.A., Pavelina M.E., et al. Mach–Zehnder interferometer based on corner-cube retroreflectors and beams with controlled polarization structure // J. Opt. Technol. 2025. V. 92. № 3. P. 176–182. http://doi.org/10.1364/JOT.92.000176  
    1. Wang B., Shi J., Zhang T., et al. Improved lateral resolution with an annular vortex depletion beam in STED microscopy // Opt. Lett. 2017. V. 42. № 23. P. 4885–4888. http://doi.org/10.1364/OL.42.004885
    2. Man Z., Shi W., Zhang Y., et al. Properties of surface plasmon polaritons excited by generalized cylindrical vector beams // Appl. Phys. B. 2015. V. 119. P. 125–134. http://doi.org/10.1007/s00340-015-6064-6
    3. Matsusaka S., Kozawa Y., Sato S. Micro-hole drilling by tightly focused vector beams // Opt. Lett. 2018. V. 43. № 7. P. 1542–1545. http://doi.org/10.1364/OL.43.001542
    4. Roxworthy B.J., Toussaint K.C.Jr. Optical trapping with π-phase cylindrical vector beams // New J. Phys. 2010. V. 12. P. 073012. http://doi.org/10.1088/1367-2630/12/7/073012
    5. Ren Y., Wang Z., Xie G., et al. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing // Opt. Lett. 2015. V. 40. № 18. P. 4210–4213. https://doi.org/10.1364/OL.40.004210
    6. Milione G., Lavery M.P.J., Huang H., et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer // Opt. Lett. 2015. V. 40. № 9. P. 1980–1983. https://doi.org/10.1364/OL.40.001980
    7. Ndagano B., Nape I., Cox M.A., et al. Creation and detection of vector vortex modes for classical and quantum communication // J. Lightwave Technol. 2018. V. 36. № 2. P. 292–301. http://doi.org/10.1109/JLT.2017.2766760
    8. Parigi V., D'Ambrosio V., Arnold C., et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory // Nature Commun. 2015. V. 6. P. 7706. http://doi.org/10.1038/ncomms8706
    9. Sokolov A.L., Murashkin V.V. Retroreflective spatial-polarization interferometer // Appl. Opt. 2020. V. 59. № 32. P. 9912–9923. http://doi.org/10.1364/AO.403232
    10. Nagali E., Sciarrino F. Manipulation of photonic orbital angular momentum for quantum information processing // Advanced Photonic Sci. InTech; 2012. http://doi.org/10.5772/27653
    11. Соколов А.Л., Мурашкин В.В. Дифракционные поляризационные оптические элементы с радиальной симметрией // Оптика и спектроскопия. 2011. Т. 111. С. 900–907.Sokolov A.L., Murashkin V.V. Diffraction polarization optical elements with radial symmetry // Opt. Spectrosc. 2011. V. 111. P. 859–865. https://doi.org/10.1134/S0030400X11130212
    12. Решетников Д.Д., Соколов А.Л., Вашукевич Е.А., и др. Протокол квантового распределения ключа на аксиально-симметричных поляризационных пучках в атмосферном канале // Изв. вузов. Радиофизика. 2024. Т. 67. № 1. С. 58–72. https://doi.org/10.52452/00213462_2024_67_01_58
  •  Reshetnikov D.D., Sokolov A.L., Vashukevich E.A., et al. Quantum key distribution protocol using axially symmetric polarization beams in an atmospheric channel // Radiophys Quantum El. 2024. V. 67. P. 51–63. http://doi.org/10.1007/s11141-025-10352-z