ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-03-40-52

УДК: 520.872, 778.38

Possibilities of using waveguide holograms in optical element quality control schemes

For Russian citation (Opticheskii Zhurnal):

Путилин Н.А., Соломатин В.А., Копёнкин С.С., Бородин Ю.П. Возможности применения волноводных голограмм в схемах контроля качества оптических элементов // Оптический журнал. 2026. Т. 93. № 3. С. 40–52. http://doi.org/10.17586/1023-5086-2026-93-03-40-52

Putilin N.A., Solomatin V.A., Kopenkin S.S., Borodin Yu.P. Possibilities of using waveguide holograms in optical element quality control schemes [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 3. P. 40–52. http://doi.org/10.17586/1023-5086-2026-93-03-40-52

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Waveguide holograms and the possibilities of their application in interferometric schemes of optical elements quality control. Aim of study. Increasing the sensitivity of interferometric wavefront monitoring systems through the use of waveguide diffractive elements. Method. computer modeling of the operation of waveguide diffractive elements in a specialized software package developed by the authors. It is based on non-sequential ray tracing with the transfer of information about the phase and amplitude of the wave. The results of modeling were compared with the experimental data. Main results. The potential of using waveguide diffractive elements in interferometric installations has been confirmed. A new scheme of a multi-beam interferometer based on a waveguide diffractive periscope is proposed. The results of computer modeling and initial experiments allow us to declare that this scheme has a significantly higher sensitivity compared to reference plane-parallel plates. Practical significance. The proposed design of an interferometric scheme based on a waveguide diffractive element opens up the possibility of creating compact integrated interferometers with increased accuracy of wavefront control.

Keywords:

waveguide diffractive periscope, holography, interferometry, computer modeling

OCIS codes: 120.3180, 090.2890

References:
  1. Корольков В.П., Насыров Р.К., Седухин А.Г. и др. Новые методы изготовления высокоапертурных компьютерно-синтезированных голограмм для формирования эталонных волновых фронтов в интерферометрии // Автометрия. 2020. Т. 56. № 2. С. 4254 https://doi.org/10.15372/AUT20200204
  • Korolkov V.P., Nasyrov R.K., Sedukhin A.G., et al. New Methods of Manufacturing High-Aperture Computer-Generated Holograms for Reference Wavefront Shaping in Interferometry // Optoelectron.Instrument.Proc. 2020. V. 56. № 2. P. 140–149. https://doi.org/10.3103/S8756699020020119  
    1. Chang C., Bang K., Wetzstein G., et al. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective // Optica. 2020. V. 7. № 11. P. 15631578. https://doi.org/10.1364/OPTICA.406004
    2. Kress B.C., Chatterjee I. Waveguide combiners for mixed reality headsets: A nanophotonics design perspective // Nanophotonics. 2020. V. 10. № 1. P. 4174. http://doi.org/10.1515/nanoph-2020-0410
    3. Suhara T., Nishihara H., Koyama J. Waveguide holograms: A new approach to hologram integration // Opt. Commun. 1976. V. 19. № 3. P. 353358. https://doi.org/10.1016/0030-4018(76)90097-3
    4. Morozov V., Putilin A. Waveguide holograms for matched filtering systems // Optical and Digital Pattern Recognition. SPIE. 1987. V. 754. P. 4850. https://doi.org/10.1364/OFC.1987.TUQ41
    5. Upatnieks J. Compact holographic sight // Holographic Optics: Design and Applications. SPIE. 1988. V. 883. P. 17117 https://doi.org/10.1117/12.944141
    6. Huang Q., Gilbert J.A., Caulfield H.J. Holographic interferometry using substrate guided waves // SPIE Milestone Series. 1998. V. 144. P. 628633. https://doi.org/10.1007/BF02328700
    7. Pyun K.S., Putilin A., Morozov A., et al. Holographic 3D printing apparatus and method of driving the same // US Patent 9 213 312 B2. 2012. Publ. Dec. 15, 2015.
    8. An J., Won K., Kim Y., et al. Slim-panel holographic video display // Nature Commun. 2020. V. 11. № 1. P. 5568. https://doi.org/10.1038/s41467-020-19298-4
    9. Путилин Н.А., Дубынин С.Е., Путилин А.Н. и др. Искажения виртуального изображения в схемах дисплеев дополненной реальности на волноводных голограммах: возникновение тангенциальной дисторсии и хроматизма увеличения // Оптический журнал. 2024. Т. 91. № 3. С. 7994. http://doi.org/17586/1023-5086-2024-91-03-79-94
  • Putilin N.A., Dubynin S.E., Putilin A.N., et al. Distortions of the virtual image in augmented reality displays based on waveguide holograms: the arising of tangential distortion and magnification chromatism // J. Opt. Technol. 2024. V. 91 № 3. P. 181190. https://doi.org/10.1364/JOT.91.000181  
    1. Strakhov I.A., Safonov B.S., Cheryasov D.V. Speckle interferometry with CMOS detector // Astrophysical Bull. 2023. V. 78. № 2. P. 234258. https://doi.org/10.1134/S1990341323020104
    2. Парамонова О.Л., Шардаков Н.Т., Кручинин Д.Ю. Исследования поверхности оптических стекол методом интерферометрии белого света // Оптический журнал. 2021. Т. 88. № 1. С. 76–81. http://doi.org/10.17586/1023-5086-2021-88-01-76-81
  • Paramonova O.L., Shardakov N.T., Kruchinin D.Yu. Surface studies of optical glasses by white-light interferometry // J. Opt. Technol. 2021. V. 88 № 1. P. 55–59 https://doi.org/10.1364/JOT.88.000055