DOI: 10.17586/1023-5086-2026-93-03-62-70
УДК: 535.36, 535.015
Optical beams and images in turbulent media: Parameterization features of non-Kolmogorov turbulence spectrum models
Лукин В.П., Лукин И.П. Вопросы формирования оптических пучков и изображений в турбулентных средах: особенности параметризации неколмогоровских моделей спектра турбулентности // Оптический журнал. 2026. Т. 93. № 3. С. 62–70. http://doi.org/10.17586/1023-5086-2026-93-03-62-70
Lukin V.P., Lukin I.P. Optical beams and images in turbulent media: Parameterization features of non-Kolmogorov turbulence spectrum models [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 3. P. 62–70. http://doi.org/10.17586/1023-5086-2026-93-03-62-70
Subject of the study. Information related to the solution of the problem of obtaining analytical expressions for calculating fluctuations in the parameters of optical waves as they propagate in a turbulent medium with a non-Kolmogorov turbulence spectrum. The aim of this work is to obtain relatively simple formulas for the dependence of the fluctuation parameters of optical waves due to their propagation in turbulent media with a non-Kolmogorov spectrum. Method. The primary analysis method utilizes theoretical calculations, supplemented by numerical computations using atmospheric models. Main results. Under the assumption that the integral turbulence energy is independent of the turbulence spectrum type, relations for the structural parameters of the refractive index of the medium for various types of turbulence are obtained. The results obtained in this study enable the recalculation of optical wave parameters during propagation in a turbulent medium with one spectral variation law for media with a different turbulence spectrum behavior law. Data on the applicability of the predictive correction algorithm under changing atmospheric turbulence conditions are obtained. Practical application. The results of this work can be used in the development of adaptive optics systems and in the study of turbulence along the optical propagation path.
turbulence, atmosphere, fluctuations, turbulence spectrum, adaptive correction
OCIS codes: 010.1080, 010.7350, 110.1080
References:- Рытов С.М. Введение в статистическую радиофизику. Уч. пособ. в 2 ч. 2-ое изд. М.: Наука, 1976. 494 с.
Rytov S.M. Introduction to statistical radiophysics [in Russian]. Study Guide in 2 Parts. 2nd Ed. Moscow: “Nauka” Publ., 1976. 494 p.
- Татарский В.И. Распространение волн в турбулентной атмосфере. М.: Наука, 1967. 548 с.
Tatarsky V.I. Wave propagation in a turbulent atmosphere [in Russian]. Moscow: “Nauka” Publ., 1967. 548 p.
- Монин А.С., Яглом А.М. Статистическая гидромеханика. Ч. 1. М.: Наука, 1965. 460 с.
Monin A.S., Yaglom A.M. Statistical hydromechanics [in Russian]. Part 1. Moscow: “Nauka” Publ., 1965. 460 p.
- Лукин В.П., Носов В.В., Носов Е.В. и др. О влиянии масштабов атмосферной турбулентности // Успехи современного естествознания. 2015. № 1. Ч. 7. С. 1179–1183.
Lukin V.P., Nosov V.V., Nosov E.V., et al. On the influence of the scale of atmospheric turbulence [in Russian] // Advances in Modern Natural Science. 2015. № 1. Part 7. P. 1179–1183.
- Lukin V.P., Bol’basova L.A., Nosov V.V. Comparison of Kolmogorov’s and coherent turbulence // Appl. Opt. 2014. V. 53. P. B231–B236. https://doi.org/10.1364/AO.53.00B231
- Lukin V.P., Nosov E.V., Nosov V.V., et al. Causes of non-Kolmogorov turbulence in the atmosphere // Appl. Opt. 201 V. 55. P. B163–B168. https://doi.org/10.1364/AO.55.00B163
- Сharnotskii M.I. Wave propagation in random media with spectral exponent outside the (3, 4) range // Workshop on Non-Kolmogorov Turbulence. Fraunhofer IOSB, Ettlingen, 2019.
- Lazorenko P.F. Differential image motion at non-Kolmogorov distortions of the turbulent wave-front // Astronomy&Astrophysics. 2002. V. 382. P. 1125–1137. https://doi.org/10.1051/0004-6361:20011671
- Toselli I., Andrews L.C., Phillips R.L., et al. Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence // Proc. SPIE. 2007. V. 6551. P. 65510E. https://doi.org/10.1117/12.719033
- Tan L., Du W., Ma J. Effect of the outer scale on the angle of arrival variance for free-space-laser beam corrugated by non-Kolmogorov turbulence // J. Russ. Laser Res. 2008. V. 30. № 6. P. 552.
- Cui L., Xue B., Cao X., et al. Angle of arrival fluctuations considering turbulence outer scale for optical waves’ propagation through moderate-to-strong non-Kolmogorov turbulence // JOSA A. Opt. Image Sci. 2014. V. 31. № 4. P. 829–835. https://doi.org/10.1364/josaa.31.000829
- Andrews L.C., Phillips R.L., Crabbs R., et al. Deep turbulence propagation of Gaussian beam wave in anisotropic non-Kolmogorov turbulence // Proc. SPIE. 2013. V. 8874. P. 887402. https://doi.org/10.1117/2026405
- Golbraikh E. and Kopeika N.S. Turbulence strength parameter in laboratory and natural optical experiments in non-Kolmogorov cases // Opt. Commun. 2004. V. 242. № 4–6. P. 333–338.
- Гурвич А.С., Кон А.И., Миронов В.Л. и др. Лазерное излучение в турбулентной атмосфере. М.: Наука, 1976. 277 c.
Gurvich A.S., Kon A.I., Mironov V.L., et al. Laser radiation in a turbulent atmosphere [in Russian]. Moscow: “Nauka” Publ., 1976. 277 p.
- Fried D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures // JOSA. 1966. V. 56. № 10. P. 1372–1379. https://doi.org/10.1364/JOSA.56.001372
- Zilberman A., Golbraikh E., Kopeika N.S. Lidar studies of aerosol and non Kolmogorov turbulence in the mediterranean troposphere // Proc. SPIE. 2005. V. 5987. https://doi.org/10.1016/J.ATMOSRES.2007.10.003
- Toselli I., Andrews L.C., Phillips R.L. Free space optical system performance for laser beam propagation through non Kolmogorov turbulence // Proc. SPIE. 2007. V. 6457. https://doi.org/10.1117/12.698707
- Cui L., Xue B., Zhou F. Generalized anisotropic turbulence spectra and application in the optical waves propagation through anisotropic turbulence // Opt. Exp. 2015. V. 23. P. 30088–30103. https://doi.org/10.1364/oe.23.030088
- Korotkova O., Toselli I. Non-classic atmospheric optical turbulence: Review // Appl. Sci. 2021. V. 11. P. 8487. https://doi.org/10.3390/app11188487
- Лукин В.П., Больбасова Л.А., Соин Е.Л. Датчик Шэка–Гартмана как универсальный измеритель флуктуаций оптических волн // Оптический журнал. 2025. T. 92. № 3. C. 48–57. http://doi.org/10.17586/1023-5086-2025-92-03-48-57
Lukin V.P., Bolbasova L.A. Soin E.L. Shack–Hartmann sensor as a universal instrument for measuring optical wave fluctuations // J. Opt. Technol. 2025. V. 92. № 3. P. 170–175. https://doi.org/10.1364/JOT.92.000170
- Лукин В.П., Лукин И.П. Возможности прогнозирования фазовых флуктуаций на вертикальных атмосферных трассах // Сб.: Оптика атмосферы и океана. Физика атмосферы. Материалы XXXI международного симпозиума. Т. 1. https://iao.editorum.ru/ru/nauka/collection/232/view
Lukin V.P., Lukin I.P. Possibilities of forecasting phase fluctuations on vertical atmospheric paths [in Russian] // Collection: Optics of the Atmosphere and Ocean. Physics of the Atmosphere. Proc. XXXI Intern. Symp. V. 1. https://iao.editorum.ru/ru/nauka/collection/232/view
- Noll R. Zernike polynomials and atmospheric turbulence // JOSA. 1976. V. 66. № 3. P. 207–211. https://doi.org/10.1364/JOSA.66.000207
- Андреева М.С., Ирошников Н.Г., Корябин А.В. и др. Использование датчика волнового фронта для оценки параметров атмосферной турбулентности // Автометрия. 2012. Т. 48. № 2. С. 103–111.
Andreeva M.S., Iroshnikov N.G., Koryabin A.B., et al. Usage of wavefront sensor for estimation of atmospheric turbulence parameters // Optoelectronics, Instrumentation and Data Proc. 2012. V. 48. № 2. P. 197–204.
- Больбасова Л.А., Лукин В.П. Адаптивная коррекция атмосферных искажений оптических изображений на основе искусственного опорного источника. М.: изд. «Физико-математическая литература», 2012. 125 с.
Bolbasova L.A., Lukin V.P. Adaptive correction of atmospheric distortions of optical images based on an artificial reference source [in Russian]. Moscow: Publishing house "Physical and Mathematical Literature", 2012. 125 p.
ru