DOI: 10.17586/1023-5086-2026-93-03-79-91
УДК: 535.42, 778.38
Augmented reality displays optical systems based on asymmetric pupil multiplication schemes
Путилин А.Н., Дубынин С.Е., Путилин Н.А., Копёнкин С.С., Бородин Ю.П. Оптические системы дисплеев дополненной реальности на основе асимметричных схем мультипликации выходного зрачка // Оптический журнал. 2026. Т. 93. № 3. С. 79–91. http://doi.org/10.17586/1023-5086-2026-93-03-79-91
Putilin A.N., Dubynin S.E., Putilin N.A., Kopenkin S.S., Borodin Yu.P. Augmented reality displays optical systems based on asymmetric pupil multiplication schemes [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 3. P. 79–91. http://doi.org/10.17586/1023-5086-2026-93-03-79-91
Subject of research. Analysis of construction schemes, modeling, and experimental recording of asymmetric holographic waveguide devices for multiplying the exit pupil of augmented reality displays. The purpose of the work. Analysis of existing and identification of new asymmetric waveguide element designs and diffraction modes that provide an increase in the angular field or improved energy efficiency of display systems. Method. The main experimental methods used were holographic recording and the study of waveguide diffraction modes on relief-phase and Bragg diffraction gratings. Computer simulations of the waveguide diffraction gratings under consideration were also used, and the results of ray tracing were compared with the experimental results. Several options for building waveguide diffractive periscopes for original augmented reality display schemes have been analyzed. Main results. It has been determined that the inclined position of a waveguide diffractive periscope can significantly increase the angular field of the virtual image (up to 2,2 times). The mode of unidirectional ray multiplication was described. A new application of the two-ray input mode in holographic waveguide periscope systems with a horizontally elongated angular field of view is discovered. Practical significance. The created experimental samples of augmented reality displays and their computer models showed good matching and can be applied for creating working prototypes and organizing of augmented reality displays mass production.
waveguide diffraction gratings, holographic optical elements, augmented reality displays, waveguide diffractive periscopes
OCIS codes: 090.2820, 090.2890
References:- Levola T. Diffractive optics for virtual reality displays // J. Soc. Inf. Display. 2006. V. 14. № 5. P. 467–475. https://doi.org/10.1889/1.2206112
- Kress B.C., Pace M. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets // Light: Advanced Manufacturing. 2022. V. 3. № 4. P. 771–801. https://doi.org/10.37188/lam.2022.042
- Frommer A. Invited paper: Lumus optical technology for AR // SID Symposium Digest of Technical Papers. 2017. V. 48. № 1. P. 134–135 https://doi.org/10.1002/sdtp.11589
- Steiner S., Jotz M., Bachhuber F., et al. Enabling mass manufacturing of industry-standard optical waveguide combiners // J. Opt. Microsystems. 2023. V. 3. № 3. P. 033502–033502. https://doi.org/10.1117/1.JOM.3.3.033502
- Ding Y., Yang Q., Li Y., et al. Waveguide-based augmented reality displays: Perspectives and challenges // eLight. 2023. V. 3. № 1. P. 24–58. https://doi.org/10.1186/s43593-023-00057-z
- Путилин Н.А., Дубынин С.Е., Путилин А.Н. и др. Волноводные голографические перископы с двухкоординатной мультипликацией выходного зрачка на одномерной дифракционной решетке // Оптический журнал. 2025. Т. 92. № 7. С. 35–51. http://doi.org/10.17586/1023-5086-2025-92-07-35-51
Putilin N.A., Dubynin S.E., Putilin A.N., et al. Waveguide holographic periscopes with two-coordinate multiplication of the exit pupil based on the one-dimensional diffraction grating // J. Opt. Technol. 2025. V. 92. № 7. https://doi.org/10.1364/JOT.92.0000800
- Wang L., Zhao Y., Zeng L. High combiner efficiency and self-aligned compact double-sided diffractive waveguide based on linear surface relief gratings // Opt. Exp. 2024. V. 32. № 27. P. 48072–48092. https://doi.org/10.1364/OE.544302
- Callens M.K. Dual-path disparity sensor // US Patent 0 179 284 A1. 2024. Publ. May 30, 2024.
ru