ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-02-03-17

УДК: 546.21:535.33-37, 621.373.826.038.823:535.21

Generation of singlet oxygen when radiation interacts with molecular structures: review

For Russian citation (Opticheskii Zhurnal):

Багров И.В., Белоусова И.М., Киселев В.М., Кисляков И.М. Генерация синглетного кислорода при взаимодействии излучения с молекулярными структурами. Обзор // Оптический журнал. 2019. Т. 86. № 2. С. 3–17. http://doi.org/10.17586/1023-5086-2019-86-02-03-17

 

Bagrov I.V., Belousova I.M., Kiselev V.M., Kislyakov I.M. Generation of singlet oxygen when radiation interacts with molecular structures: review [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 2. P. 3–17. http://doi.org/10.17586/1023-5086-2019-86-02-03-17

For citation (Journal of Optical Technology):

I. V. Bagrov, I. M. Belousova, V. M. Kiselev, and I. M. Kislyakov, "Generation of singlet oxygen when radiation interacts with molecular structures: review," Journal of Optical Technology. 86(2), 66-76 (2019). https://doi.org/10.1364/JOT.86.000066

Abstract:

This paper is devoted to the investigation of singlet-oxygen generation processes in solutions, suspensions, and solid-phase structures of fullerenes and other carbon structures, and on the surface of metal oxides and sulfides, as well as in the absence of photosensitizers, by the direct excitation of encounter complexes of molecular oxygen with the environment when test samples are irradiated by the light of pulsed and continuous optical pumping. This involves studying both singlet-oxygen generation processes and excited-state quenching mechanisms. The singlet-oxygen generation efficiency achieved in this project can be of practical interest both for physical-and-engineering systems such as a fullerene–oxygen–iodine laser and for a number of other usages of singlet oxygen—in particular, for biology and medicine and for systems for the cleaning and decontamination of air—both household systems and special-purpose systems.

Keywords:

singlet oxygen, solutions, suspensions, photosensitizers, light excitation emission, optical pumping, absorption spectra, luminescence

Acknowledgements:

I. M. Kislyakov thanks the President’s International Fellowship Initiative (PIFI) program of the Chinese Academy of Sciences (CAS) for financial support of the work (grants 2017VTB0006 and 2018VTB0007).

OCIS codes: 160.4670, 260.3800, 300.1030, 300.2140, 300.6170, 300.6390, 350.4600

References:

1. L. J. Andrews and E. W. Abrahamson, “Formation of O 2 (1Σg+) by 1-fluoronaphthalene sensitization,” Chem. Phys. Lett. 10(2), 113–116 (1971).
2. A. A. Krasnovskiı˘, Jr., “Photosensitized singlet-oxygen luminescence in solution,” Biofizika 21(4), 748–749 (1976).
3. I. M. Byteva and G. P. Gurinovitch, “Sensitized luminescence of oxygen in solutions,” J. Luminesc. 21(1), 17–20 (1979).
4. A. U. Khan and M. Kasha, “Direct spectroscopic observation of singlet-oxygen emission at 1268 nm excited by sensitizing dyes of biological interest in liquid solution,” Proc. Natl. Acad. Sci. U.S.A. 76(12), 6047–6049 (1979).
5. A. A. Krasnovsky, Jr., “Photoluminescence of singlet oxygen in pigment solutions,” Photochem. Photobiol. 29(1), 29–36 (1979).
6. K. I. Salokhiddinov, B. M. Dzhagarov, I. M. Byteva, and G. P. Gurinovich, “Photosensitized luminescence of singlet oxygen in solutions at 1588 nm,” Chem. Phys. Lett. 76(1), 85–87 (1980).
7. P. T. Chou and A. U. Khan, “Solvation emission spectral peaks of singlet molecular oxygen,” Chem. Phys. Lett. 103(4), 281–284 (1984).
8. A. N. Macpherson, T. G. Truscott, and P. H. Turner, “Fourier-transform luminescence spectroscopy of solvated singlet oxygen,” J. Chem. Soc. Faraday Trans. 90(8), 1065–1072 (1994).
9. P. T. Chou, G. T. Wei, C. H. Lin, C. Y. Wei, and C. H. Chang, “Direct spectroscopic evidence of photosensitized O 2 765 nm ( 1Σg+→3Σg−) and O 2 dimol 634 and 703 nm (( 1Δg)2→( 3Σg−) 2 ) vibronic emission in solution,” J. Am. Chem. Soc. 118, 3031–3032 (1996).
10. C. Schweitzer and R. Schmidt, “Physical mechanisms of generation and deactivation of singlet oxygen,” Chem. Rev. 103(5), 1685–1758 (2003).
11. M. K. Nissen, S. M. Wilson, and M. L. W. Thewalt, “Highly structured singlet oxygen photoluminescence from crystalline C 60 ,” Phys. Rev. Lett. 69(16), 2423–2426 (1992).
12. V. N. Denisov, B. N. Mavrin, Zh. Ruani, R. Zamboni, and K. Taliani, “The effect of oxygen and long-wavelength excitation on the photoluminescence of a fullerene film,” Zh. Prikl. Spektrosk. 57(5–6), 489–493 (1992).
13. S. C. Howells, G. Black, and L. A. Schlie, “O 2 ( 1Δg) production and oxygen diffusion in C 60 films,” Synth. Met. 62, 1–7 (1994).
14. P. T. Chou, Y. C. Chen, C. Y. Wei, S. J. Chen, H. L. Lu, and M. Z. Lee, “The sensitized O 2 (1Δg ) dimol luminescence in solution,” Chem. Phys. Lett. 280, 134–140 (1997).

15. T. Nagano, K. Arakane, A. Ryu, T. Masunaga, K. Shinmoto, S. Mashiko, and M. Hirobe, “Comparison of singlet-oxygen production efficiency of C 60 with other photosensitizers, based on 1268-nm emission,” Chem. Pharm. Bull. 42(11), 2291–2294 (1994).
16. T. L. Makarova, V. I. Sakharov, I. T. Serenkov, and A. Ya. Vul’, “Light-induced transformation of C 60 films in the presence and absence of oxygen,” Phys. Solid State 41(3), 497–500 (1999) [Fiz. Tverd. Tela 41(3), 554–558 (1999)].
17. V. P. Belousov, I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. V. Kris’ko, A. N. Ponomarev, and E. N. Sosnov, “Photoluminescence of singlet oxygen in solutions of fullerenes and suspensions of fulleroids,” J. Opt. Technol. 68(7), 516–518 (2001) [Opt. Zh. 68(7), 76–79 (2001)].
18. S. Wang, R. Gao, F. Zhou, and M. Selke, “Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy,” J. Mater. Chem. 14, 487–493 (2004).
19. B. F. Minaev, “Intensity of singlet–triplet transitions in C 60 fullerene calculated on the basis of the time-dependent density functional theory and taking into account the quadratic response,” Opt. Spectrosc. 98(3), 336–340 (2005) [Opt. Spektrosk. 98(3), 336–340 (2005)].
20. I. V. Bagrov, I. M. Belousova, O. B. Danilov, V. M. Kiselev, T. D. Murav’eva, and E. N. Sosnov, “Photoinduced quenching of the luminescence of singlet oxygen in fullerene solutions,” Opt. Spectrosc. 102(1), 52–59 (2007) [Opt. Spektrosk. 102(1), 58–65 (2007)].
21. V. P. Belousov, I. M. Belousova, O. B. Danilov, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, “Generation of singlet oxygen in fullerene-containing media: 1. Photodesorption of singlet oxygen from fullerene-containing surfaces,” Quantum Electron. 38, 280–285 (2008) [Kvant. Elektron. (Moscow) 38, 280–285 (2008)].
22. I. V. Bagrov, I. M. Belousova, A. S. Grenishin, O. B. Danilov, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, T. D. Murav’eva, and E. N. Sosnov, “Generation of singlet oxygen in fullerene-containing media: 2. Fullerene-containing solutions,” Quantum Electron. 38, 286–293 (2008) [Kvant. Elektron. (Moscow) 38, 286–293 (2008)].
23. H. Fueno, Y. Takenaka, and K. Tanaka, “Theoretical study on energy transfer from the excited C 60 to molecular oxygen,” Opt. Spectrosc. 111(2), 248–256 (2011).
24. A. S. Stasheuski, V. A. Galievsky, A. P. Stupak, B. M. Dzhagarov, M. J. Choi, B. H. Chung, and J. Y. Jeong, “Photophysical properties and singlet-oxygen generation efficiencies of water-soluble fullerene nanoparticles,” Photochem. Photobiol. 90, 997–1003 (2014).
25. J. Wang, J. Leng, H. Yang, G. Sha, and C. Zhang, “Luminescence properties and kinetic analysis of singlet oxygen from fullerene solutions,” J. Lumin. 149, 267–271 (2014).
26. W. Y. Teoh, J. A. Scott, and R. Amal, “Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors,” J. Phys. Chem. Lett. 3(5), 629–639 (2012).
27. A. O. Ibhadon and P. Fitzpatrick, “Heterogeneous photocatalysis: recent advances and applications,” Catalysts 3(1), 189–218 (2013).
28. V. M. Kiselev, I. M. Kislyakov, and A. N. Burchinov, “Generation of singlet oxygen on the surface of metal oxides,” Opt. Spectrosc. 120(4), 520–528 (2016) [Opt. Spektrosk. 120(4), 545–555 (2016).
29. J. W. Arbogast, A. P. Darmanyan, Ch. S. Foote, Y. Rubin, F. N. Diderch, M. M. Alvarez, S. J. Anz, and R. L. Whetten, “Photophysical Properties of C 60 ,” J. Phys. Chem. 95, 11–12 (1991).
30. I. E. Kochevar and R. W. Redmond, “Photosensitized production of singlet oxygen,” Methods Enzymol. 319, 20–28 (2000).
31. V. P. Belousov, I. M. Belousova, A. S. Grenishin, O. B. Danilov, V. M. Kiselev, A. V. Kris’ko, A. A. Mak, T. D. Murav’eva, and E. N. Sosnov, “Lasing of iodine in the fullerene–oxygen–iodine system,” Opt. Spectrosc. 95(6), 830–832 (2003) [Opt. Spektrosk. 95(6), 888–890 (2003)].
32. A. S. Grenishin, V. M. Kiselev, I. M. Kislyakov, A. L. Pavlova, and E. N. Sosnov, “Advancement and problems of fullerene-oxygen-iodine laser,” Opt. Spectrosc. 108(1), 143–149 (2010) [Opt. Spektrosk. 108(1), 133–140 (2010)].
33. A. A. Mak, I. M. Belousova, V. M. Kiselev, A. S. Grenishin, O. B. Danilov, and E. N. Sosnov, “Converting solar energy into laser radiation using a fullerene-oxygen-iodine laser with solar pumping,” J. Opt. Technol. 76(4), 172–176 (2009) [Opt. Zh. 76(4), 4–24 (2009)].
34. T. Yabe, T. Ohkudo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy pumped laser with Fresnel lens and chromium-codoped medium,” Appl. Phys. Lett. 90, 261120 (2007).
35. T. Ohkudo, T. Yabe, S. Uchida, K. Yoshida, S. Uchida, T. Funatsu, B. Baghery, T. Oichi, K. Daito, M. Ichioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80-W laser irradiated by a Fresnel lens,” Opt. Lett. 34, 175–177 (2009).
36. T. H. Dinh, T. Ohkubo, T. Yabe, and H. Kuboyama, “120-watt continuous-wave solar laser with a liquid light-guide lens and an Nd:YAG rod,” Opt. Lett. 37, 2670–2672 (2012).
37. J. Almeida, D. Liang, E. Guillot, and Y. Abdel-Hadi, “A 40-W cw Nd:YAG solar laser pumped through a heliostat: a parabolic mirror system,” Laser Phys. 23, 065801 (2013).
38. P. Xu, S. Yang, C. Zhao, Z. Guan, H. Wang, Y. Zhang, H. Zhang, and T. He, “High-efficiency solar-pumped laser with a grooved Nd:YAG rod,” Appl. Opt. 53(18), 3941–3944 (2014).
39. C. S. Foote, “Quenching of singlet oxygen,” in Singlet Oxygen, H. H. Wasserman and R. W. Murray, eds. (Acad. Press, New York, 1979), pp. 139–171.
40. M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233–234, 351–371 (2002).
41. A. A. Krasnovsky, Jr., “Primary mechanisms of photoactivation of molecular oxygen. History of development and the modern status of research,” Biochemistry (Moscow). 72(10), 1065–1080 (2007).
42. A. A. Krasnovsky, Jr., “Luminescence and photochemical studies of singlet-oxygen photonics,” J. Photochem. Photobiol. A: Chem. 196, 210–218 (2008).
43. J. F. Lovell, T. W. B. Liu, J. Chen, and G. Zheng, “Activatable photo-sensitizers for imaging and therapy,” Chem. Rev. 110, 2839–2857 (2010).
44. M. S. Naderi, M. Razzaghi, G. E. Djavid, and Z. Hajebrahimi, “A comparative study of 660-nm low-level laser and light-emitted diode in proliferative effects of fibroblast cells,” J. Lasers Med. Sci. 8(3), S46–S50 (2017).
45. J. Jagdeo, E. Austin, A. Mamalis, C. Wong, and D. M. Siegel, “Light-emitting diodes in dermatology: a systematic review of randomized controlled trials,” Lasers Surg. Med. 50(6), 613–628 (2018).
46. I. V. Bagrov, I. M. Belousova, A. S. Grenishin, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, “A jet-type singlet-oxygen generator based on porous fullerene-containing structures,” Opt. Spectrosc. 112(6), 935–942 (2012) [Opt. Spektrosk. 112(6), 1009–1017 (2012)].
47. I. V. Bagrov, I. M. Belousova, A. S. Grenishin, V. M. Kiselev, I. M. Kislyakov, A. A. Mak, and E. N. Sosnov, “Modernized singlet-oxygen generator based on porous solid-phase fullerene-containing structures,” J. Opt. Technol. 79(10), 636–640 (2012) [Opt. Zh. 79(10), 35–41 (2012)].
48. A. A. Ghogare and A. Greer, “Using singlet oxygen to synthesize natural products and drugs,” Chem. Rev. 116, 9994–10034 (2016).
49. W. Fudickar and T. Linker, “Intermediates in the formation and thermolysis of peroxides from oxidations with singlet oxygen,” Aust. J. Chem. 67, 320–327 (2014).
50. T. Makarova, T. Konstantinova, L. Piotrovsky, E. Katz, and S. Lyubchik, “Design of the fullerene-based composites for oxidative inactivation of airborne pathogens,” in 21st International Conference on Composites/Nano Engineering (ICCE-21), Tenerife, Spain, July 21–27, 2013, article 501, pp. 347–348.
51. I. V. Bagrov, V. M. Kiselev, I. M. Kislyakov, A. M. Starodubtsev, and A. N. Burchinov, “Comparative studies of singlet-oxygen generation by fullerenes and single- and multilayer carbon nanotubes in aqueous suspensions,” Opt. Spectrosc. 118(3), 412–416 (2015) [Opt. Spektrosk. 118(3), 434–439 (2015)].
52. S. V. Eswaran, “Water-soluble nanocarbon materials: a panacea for all?” Current Sci. 114(9), 1846–1850 (2018).
53. I. Rašović, “Water-soluble fullerenes for medical applications,” Mater. Sci. Technol. 33(7), 777–794 (2017).

54. I. Belousova, A. Hvorostovsky, V. Kiselev, V. Zarubaev, O. Kiselev, L. Piotrovsky, P. P. Anfimov, T. Krisko, T. Muraviova, V. Rylkov, A. Starodubzev, A. Sirotkin, A. Grishkanich, I. Kudashev, A. Kancer, M. Kustikova, E. Bykovskaya, A. Mayurova, A. Stupnikov, J. Ruzankina, M. Afanasyev, N. Lukyanov, D. Redka, and N. Paklinov, “Fullerene C 60 and graphene photosensibilities for photodynamic virus inactivation,” Proc. SPIE 10492, 1049215 (2018).
55. M. Wojtoniszak, D. Roginska, B. Machalinski, M. Drozdzik, and E. Mijowska, “Graphene-oxide functionalized with methylene blue and its performance in singlet-oxygen generation,” Mater. Res. Bull. 48, 2636–2639 (2013).
56. H. Dong, C. Dong, T. Ren, Y. Li, and D. Shi, “Surface-engineered graphene-based nanomaterials for drug delivery,” J. Biomed. Nanotechnology 10, 2086–2106 (2014).
57. T. Dutta, R. Sarkar, B. Pakhira, S. Ghosh, R. Sarkar, A. Barui, and S. Sarkar, “ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: comparison with graphene oxide (GO),” RSC Adv. 5, 80192–80195 (2015).
58. T. A. Tabish, S. Zhang, and P. G. Winyard, “Developing the next generation of graphene-based platforms for cancer therapeutics: the potential role of reactive oxygen species,” Redox Biol. 15, 34–40 (2018).
59. E. L. Clennan, “New mechanistic and synthetic aspects of singlet-oxygen chemistry,” Tetrahedron 56, 9151–9179 (2000).
60. E. L. Clennan and A. Pace, “Advances in singlet-oxygen chemistry,” Tetrahedron 61, 6665–6691 (2005).
61. M. Bregnhøj, M. Westberg, F. Jensen, and P. R. Ogilby, “Solvent-dependent singlet-oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions,” Phys. Chem. Chem. Phys. 18, 22946–22961 (2016).
62. M. Bregnhøj, M. Westberg, B. F. Minaev, and P. R. Ogilby, “Singlet-oxygen photophysics in liquid solvents: converging on a unified picture,” Acc. Chem. Res. 50(8), 1920–1927 (2017).
63. I. Pibiri, S. Buscemi, A. P. Piccionello, and A. Pace, “Photochemically produced singlet oxygen: applications and perspectives,” ChemPhotoChem 2(7), 535–547 (2018).
64. I. V. Bagrov, V. M. Kiselev, I. M. Kislyakov, A. M. Starodubtsev, and A. N. Burchinov, “Comparative studies of singlet-oxygen generation by fullerenes and single- and multilayer carbon nanotubes in the form of solid-phase film coatings,” Opt. Spectrosc. 118(3), 417–424 (2015) [Opt. Spektrosk. 118(3), 440–448 (2015)].
65. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Birne, K. O’Shea, M. H. Entezari, and D. D. Dionisiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
66. O. K. Dalrymple, E. Stefanakos, M. A. Trotz, and D. Y. Goswami, “A review of the mechanisms and modeling of photocatalytic disinfection,” Appl. Catal. B 98, 27–38 (2010).
67. K. Gohre and G. C. Miller, “Photochemical generation of singlet oxygen on non-transition-metal oxide surfaces,” J. Chem. Soc., Faraday Trans. 1 81(3), 793–800 (1985).
68. Y. Nosaka, T. Daimon, A. Y. Nosaka, and Y. Myrakami, “Singlet-oxygen formation in photocatalytic TiO 2 aqueous suspension,” Phys. Chem. Chem. Phys. 6, 2917–2918 (2004).
69. I. V. Bagrov, I. M. Belousova, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, “Observation of the luminescence of singlet oxygen at λ = 1270 nm under LED irradiation of CCl 4 ,” Opt. Spectrosc. 113(1), 57–62 (2012) [Opt. Spektrosk. 113(1), 59–64 (2012)].
70. I. V. Bagrov, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, “Direct optical excitation of singlet oxygen in organic solvents,” Opt. Spectrosc. 116(4), 567–574 (2014) [Opt. Spektrosk. 116(4), 609–618 (2014)].
71. A. N. Terenin, The Photonics of Dye Molecules and Related Organic Compounds (Nauka, Leningrad, 1967).
72. B. F. Minaev, “The effect of spin-orbit interaction on the intensity of magnetic dipole transitions in the oxygen molecule,” Izv. Vyssh. Uchebn. Zaved. Ser. Fiz. (9), 115–120 (1978).
73. B. F. Minaev, “Quantum-chemical investigation of the mechanisms of the photosensitization, luminescence, and quenching of singlet 1Δg oxygen in solutions,” J. Appl. Spectrosc. 42(5), 518–523 (1985).
74. R. D. Scurlock and P. R. Ogilby, “Effect of solvent on the rate constant for the radiative deactivation of singlet molecular oxygen ( 1Δg O 2 ),” J. Phys. Chem. 91, 4599–4602 (1987).
75. R. Schmidt and E. Afshari, “Effect of solvent on the phosphorescence rate constant of singlet molecular oxygen ( 1Δg),” J. Phys. Chem. 94, 4377–4378 (1990).
76. E. H. Fink, K. D. Setzer, J. Wildt, D. A. Ramsay, and M. Vervloet, “Collision-induced emission of O 2 (b1∑g+→a1Δg) in the gas phase,” J. Quantum Chem. 39(3), 287–298 (1991).
77. J. Wildt, E. H. Fink, P. Biggs, R. P. Wayne, and A. F. Vilesov, “Collision-induced emission of O 2 (a1Δg →X3Σg−) in the gas phase,” Chem. Phys. 159(1), 127–140 (1992).
78. B. F. Minaev, S. Lunell, and G. I. Kobzev, “The influence of intermolecular interaction on the forbidden near-IR transitions in molecular oxygen,” J. Mol. Struct. (Theochem) 284, 1–9 (1993).
79. G. I. Kobzev and B. F. Minaev, “Indirect influence of the molecules of the ambient medium on the sensitized luminescence of oxygen,” Zh. Fiz. Khim. 79(1), 166–171 (2005).
80. E. Furui, N. Akai, A. Ida, A. Kawai, and K. Shibuya, “Observation of collision-induced near-IR emission of singlet oxygen O 2a1Δg generated by visible light excitation of gaseous O 2 dimol,” Chem. Phys. Lett. 471, 45–49 (2009).
81. B. Minaev, “Photochemistry and spectroscopy of singlet oxygen in solvents. Recent advances which support the old theory,” Chem. Chem. Technol. 10(4(s)), 519–530 (2016).
82. V. M. Kiselev, I. M. Kislyakov, and I. V. Bagrov, “Spectral dependence of the efficiency of direct optical excitation of molecular oxygen in tetrachloromethane,” Opt. Spectrosc. 120(6), 859–863 (2016) [Opt. Spektrosk. 120(6), 916–921 (2016)].
83. V. M. Kiselev, I. M. Kislyakov, and I. V. Bagrov, “A comparative study of singlet-oxygen generation by C 60 and C 70 fullerenes,” Opt. Spectrosc. 122(2), 184–193 (2017) [Opt. Spektrosk. 122(2), 203–213 (2017)].
84. V. M. Kiselev and I. V. Bagrov, “Spectral properties of singlet-oxygen luminescence in the IR region at the 1Δg→3Σg transition in the presence of fullerene as a photosensitizer,” Opt. Spectrosc. 123(4), 559–568 (2017) [Opt. Spektrosk. 123(4), 543–554 (2017)].
85. G. P. Gurinovich, “Photonics of molecular oxygen,” Zh. Prikl. Spektrosk. 54(3), 403–412 (1991).
86. D. H. Parker, “Laser photochemistry of molecular oxygen,” Acc. Chem. Res. 33, 563–571 (2000).
87. D. A. Pejakovic, R. A. Copeland, P. C. Cosby, and T. G. Slanger, “Studies on the production of O 2 (a1Δg, v = 0) and O 2 (b1Σg+, v = 0) from collisional removal of O 2 (A3Σu+, v′ = 6–10),” J. Geophys. Res. 112, A10307 (2007).
88. A. P. Trushina, V. G. Goldort, S. A. Kochubei, and A. V. Baklanov, “UV-photoexcitation of encounter complexes of oxygen O 2–O 2 as a source of singlet oxygen O 2 ( 1Δg) in gas phase,” Chem. Phys. Lett. 485(1–3), 11–15 (2010).
89. A. P. Trushina, V. G. Goldort, S. A. Kochubei, and A. V. Baklanov, “Quantum yield and mechanism of singlet oxygen generation via UV photoexcitation of O 2–O 2 and N 2–O 2 encounter complexes,” J. Phys. Chem. A 116(25), 6621–6629 (2012).
90. T. Hidemori, N. Akai, A. Kawai, and K. Shibuya, “Intensity enhancement of weak O 2a1Δg → X3Σg− emission at 1270 nm by collisions with foreign gases,” J. Phys. Chem. A 116(9), 2032–2038 (2012).
91. A. P. Pyryaeva, V. G. Goldort, S. A. Kochubei, and A. V. Baklanov, “Singlet-oxygen O 2 (a1Δg) formation via UV-excitation of isoprene-oxygen C 5 H 8–O 2 encounter complexes in gas phase,” Chem. Phys. Lett. 610–611, 8–13 (2014).
92. A. V. Baklanov, A. S. Bogomolov, A. P. Pyryaeva, G. A. Bogdanchikov, S. A. Kochubei, Z. Farooq, and D. H. Parker, “Singlet-oxygen photogeneration from X–O 2 van der Waals complexes: double spin-flip vs. charge-transfer mechanism,” Phys. Chem. Chem. Phys. 17, 28565–28573 (2015).
93. J. Wildt, G. Bednarek, E. H. Fink, and R. P. Wayne, “Laser excitation of the A3Σu+, A′3Δu and c1Σu− states of molecular oxygen,” Chem. Phys. 156(3), 497–508 (1991).
94. A. A. Krasnovsky, Jr., N. N. Drozdova, A. V. Ivanov, and R. V. Ambartzumian, “Activation of molecular oxygen by infrared laserradiation in pigment-free aerobic systems,” Biochemistry (Moscow) 68(9), 963–966 (2003).
95. A. A. Krasnovsky, Jr., and R. V. Ambartzumian, “Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions: the photoreaction action spectrum and spectroscopic parameters of the 1Δg→Σg− transition in oxygen molecules,” Chem. Phys. Lett. 400, 531–535 (2004).
96. A. A. Krasnovsky, Jr., Ya. V. Roumbal, A. V. Ivanov, and R. V. Ambartzumian, “Solvent dependence of the steady-state rate of 1 O 2 generation upon excitation of dissolved oxygen by cw 1267-nm laser radiation in air-saturated solutions: estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength,” Chem. Phys. Lett. 430, 260–264 (2006).
97. A. A. Krasnovsky, Jr., Ya. V. Roumbal, and A. A. Strizhakov, “Rates of 1 O 2 (1Δg) production upon direct excitation of molecular oxygen by 1270-nm laser radiation in air-saturated alcohols and micellar aqueous dispersions,” Chem. Phys. Lett. 458, 195–199 (2008).
98. A. A. Krasnovsky, Jr., and A. S. Kozlov, “New approach to measurement of IR absorption spectra of dissolved oxygen molecules based on photochemical activity of oxygen upon direct laser excitation,” Biophysics (Moscow) 59(2), 199–205 (2014).
99. M. R. Detty, “Direct 1270-nm irradiation as an alternative to photosensitized generation of singlet oxygen to induce cell death,” Photochem. Photobiol. 88, 2–4 (2012).
100. F. Anquez, I. El Yazidi-Belkoura, S. Randoux, P. Suret, and E. Courtade, “Cancerous cell death from sensitizer-free photoactivation of singlet oxygen,” Photochem. Photobiol. 88(1), 167–174 (2011).
101. F. Anquez, I. El Yazidi-Belkoura, P. Suret, S. Randoux, and E. Courtade, “Cell death induced by direct laser activation of singlet oxygen at 1270 nm,” Laser Phys. 23, 025601 (2013).
102. M. Bregnhøj, A. Blázquez-Castro, M. Westberg, T. H. Breitenbac, and P. R. Ogilby, “Direct 765-nm optical excitation of molecular oxygen in solution and in single mammalian cells,” J. Phys. Chem. B 119(17), 5422–5429 (2015).
103. M. V. Zagidullin, N. A. Khvatov, and A. S. Insapov, “1.27-μm emission of O 2 ( 1Δ) induced by collisions with oxygen molecules,” Opt. Spectrosc. 118(5), 693–696 (2015) [Opt. Spektrosk. 118(5), 725–728 (2015)].
104. M. V. Zagidullin, A. A. Pershin, V. N. Azyazov, and A. M. Mebel, “Luminescence of the (O 2 (a1Δg)) 2 collisional complex in the temperature range of 90–315 K: experiment and theory,” J. Chem. Phys. 143(24), 244315 (2015).
105. V. N. Azyazov, M. I. Zagidullin, V. D. Nikolaev, M. I. Svistun, and N. A. Khvatov, “Jet O 2 ( 1Δ) generator with oxygen pressures up to 13.3 kPa,” Quantum Electron. 24(2), 120–123 (1994) [Kvant. Elektron. (Moscow) 21(2), 129–132 (1994)].
106. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO 2 photocatalysis and related surface phenomena,” Surf. Sci. Rept. 63, 515–582 (2008).
107. A. Di Paola, E. Garcia-Lopez, G. Marci, and L. Palmisano, “A survey of photocatalytic materials for environmental remediation,” J. Hazard Mater. 211, 3–29 (2012).
108. O. K. Dalrymple, E. Stefanakos, M. A. Trotz, and D. Y. Goswami, “A review of the mechanisms and modeling of photocatalytic disinfection,” Appl. Catal. B 98, 27–38 (2010).
109. W. Y. Teoh, R. Amal, and J. Scott, “Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors,” J. Phys. Chem. Lett. 3, 629–639 (2012).
110. Y. Li, W. Zhang, J. Niu, and Y. Chen, “Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles,” ACS Nano 6, 5164–5173 (2012).
111. J. Zhang and Y. Nosaka, “Mechanism of the OH radical generation in photocatalysis with TiO 2 of different crystalline types,” J. Phys. Chem. C 118, 10824–10832 (2014).
112. R. J. Tayade, T. S. Natarajan, and H. C. Bajaj, “Photocatalytic degradation of methylene blue dye using ultraviolet light-emitting diodes,” Ind. Eng. Chem. Res. 48, 10262–10267 (2009).
113. O. Sacco, M. Stoller, V. Vaiano, P. Ciambelli, A. Chianese, and D. Sannino, “Photocatalytic degradation of organic dyes under visible light on n-doped TiO 2 photocatalysts,” Int. J. Photoenergy 2012 626759 (2012).
114. V. M. Kiselev, S. K. Evstrop’ev, and A. M. Starodubtsev, “Photocatalytic degradation and sorption of methylene blue on the surface of metal oxides in aqueous solutions of the dye,” Opt. Spectrosc. 123(5), 809–815 (2017) [Opt. Spektrosk. 123(5), 798–805 (2017)].
115. M. K. Nissen, S. M. Wilson, and M. L. W. Thewalt, “Highly structured singlet oxygen photoluminescence from crystalline C 60 ,” Phys. Rev. Lett. 69(16), 2423–2426 (1992).
116. J. Mohan, Organic Spectroscopy: Principles and Application (Alpha Science International Ltd., Harrow, UK, 2004).
117. P. A. D. De Maine, “Iodine complexes in inert solvents. I. I 2–I 2 in carbon tetrachloride and in n-heptane,” J. Chem. Phys. 24, 1092–1199 (1956).
118. P. A. D. De Maine, “Iodine complexes in inert solvents. III. Iodine complexes with methanol, ethanol, or diethyl ether in carbon tetrachloride,” J. Chem. Phys. 26, 1192–1199 (1957).
119. R. M. Keefer and T. L. Allen, “Absorption spectra of I 2 and I 4 in CCl 4 solution,” J. Chem. Phys. 25, 1059–1061 (1956).
120. R. L. Strong, S. J. Rand, and J. A. Britt, “Charge-transfer spectra of iodine-atom–aromatic hydrocarbon complexes,” J. Am. Chem. Soc. 82(19), 5053–5057 (1960).
121. R. E. Bühler and M. Ebert, “Transient charge-transfer complexes with chlorine atoms by pulse radiolysis of carbon tetrachloride solutions,” Nature 214, 1220–1221 (1967).
122. J. Olmsted III and G. Karal, “Iodine-sensitized photoformation of singlet oxygen,” J. Am. Chem. Soc. 94(10), 3305–3310 (1972).
123. R. Bühling, A. C. Becker, B. F. Minaev, K. Seranski, and U. Schurath, “Excitation of O 2 (a 1Δg, b1∑g+) and I( 2 P1/2 ) by energy transfer from I 2 (A, A′3∏1,2u ) in solid rare gases,” Chem. Phys. 142, 445–454 (1990).
124. I. V. Bagrov, I. M. Belousova, A. V. Ermakov, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, “Effect of oxygen and iodine on the optical and magnetic properties of fullerite C 60 ,” Opt. Spectrosc. 106(4), 505–513 (2009) [Opt. Spektrosk. 106(4), 570–578 (2009)].
125. V. M. Kiselev, I. V. Bagrov, and A. M. Starodubtsev, “The effect of molecular iodine on singlet-oxygen luminescence in tetrachloromethane,” Opt. Spectrosc. 124(2), 193–197 (2018) [Opt. Spektrosk. 124(2), 197–201 (2018)].
126. R. G. Derwent and B. A. Thrush, “Excitation of iodine by singlet molecular oxygen. Part 1—Mechanism of the I 2 chemiluminescence,” J. Chem. Soc., Faraday Trans. 2 68, 720–728 (1972).
127. R. G. Derwent and B. A. Thrush, “Excitation of iodine by singlet molecular oxygen. Part 2—Kinetics of the excitation of the iodine atoms,” Faraday Discuss. Chem. Soc. 53, 162–167 (1972).
128. M. Breugst, E. Detmar, and D. von der Heiden, “Origin of the catalytic effects of molecular iodine: a computational analysis,” ACS Catal. 6(5), 3203–3212 (2016).
129. D. von der Heiden, S. Bozkus, M. Klussman, and M. Breugst, “Reaction mechanism of iodine-catalyzed Michael additions,” J. Org. Chem. 82(8), 4037–4043 (2017).
130. M. Breugst and D. von der Heiden, “Mechanisms in iodine catalysis,” Chem. Eur. J. 24(37), 9187–9199 (2018).
131. F. Heinen, E. Engelage, A. Dreger, R. Weiss, and S. M. Huber, “Iodine(III) derivatives as halogen bonding organocatalysts,” Angew. Chem. 57(14), 3830–3833 (2018).
132. S. Fustero, D. M. Sedgwick, R. Román, and P. Barrio, “Recent advances in the synthesis of functionalised monofluorinated compounds,” Chem. Commun. 54, 9706–9725 (2018).