ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-02-69-75

УДК: 535.3, 535.37, 538.975

Effect of photonic processing of thin rutile films with cadmium sulphide quantum dots on forming the conditions for separating the nonequilibrium charge carriers

For Russian citation (Opticheskii Zhurnal):

Кущев С.Б., Латышев А.Н., Леонова Л.Ю., Попова Е.В., Овчинников О.В., Смирнов С.М. Влияние фотонной обработки тонких плёнок рутила с квантовыми точками сульфида кадмия на формирование условий для разделения неравновесных носителей заряда // Оптический журнал. 2020. Т. 87. № 2. С. 69–75.


Kushchev S.B., Latyshev A.N., Leonova L.Yu., Popova E.V., Ovchinnikov O.V., Smirnov M.S. Effect of photonic processing of thin rutile films with cadmium sulphide quantum dots on forming the conditions for separating the nonequilibrium charge carriers [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 2. P. 69–75.

For citation (Journal of Optical Technology):

S. B. Kushchev, A. N. Latyshev, L. Yu. Leonova, E. V. Popova, O. V. Ovchinnikov, and M. S. Smirnov, "Effect of photonic processing of thin rutile films with cadmium sulphide quantum dots on forming the conditions for separating the nonequilibrium charge carriers," Journal of Optical Technology. 87(2), 121-126 (2020).


TiO2/QDCdS heterostructure was synthesized by depositing preliminarily prepared cadmium sulphide (CdS) quantum dots onto microcrystalline rutile films and then their absorption and luminescence spectra were studied. It was observed that photon processing of the TiO2/QDCdS heterostructure with high-power light fluxes of xenon flash lamps contributes to the generation of the conditions necessary for the separation of nonequilibrium charge carriers.


titanium dioxide, rutile, nanocrystal films, colloidal quantum dots, cadmium sulphide, heterosystem, optical absorption spectra, size effect, luminescence


The authors are grateful to Academician V. M. Ievlev for participating in the discussion of the results and providing valuable comments.

OCIS codes: 300.6170, 310.6860, 160.4236, 160.6000


1. A. Ekimov and A. Onushchenko, “Size quantization of the electron energy spectrum in a microscopic semiconductor crystal,” JETP Lett. 40(8), 1136–1139 (1984) [Pis’ma Zh. Eksp. Teor. Fiz. 40(8), 337–340 (1984)].
2. D. R. Baker and P. V. Kamat, “Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures,” Adv. Funct. Mater. 19(5), 805–811 (2009).
3. J. Li, M. W. G. Hoffmann, H. Shen, C. Fabrega, J. D. Prades, T. Andreu, F. Hernandez-Ramirez, and S. Mathur, “Enhanced photo-electrochemical activity of an excitonic staircase in CdS@TiO2 and CdS@anatase@rutile TiO2 heterostructures,” J. Mater. Chem. 22(38), 20472–20476 (2012).
4. M. Kapilashrami, Y. Zhang, Y.-S. Liu, A. Hagfeld, and J. Guo, “Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications,” Chem. Rev. 114(19), 9662–9707 (2014).
5. H. Khlyap, Physics and Technology of Semiconductor Thin Film-Based Active Elements and Devices (Bentham, 2018).
6. A. Milns and D. Feucht, Heterojunctions and Metal-Semiconductor Transitions (Mir, Moscow, 1975).

7. V. Ievlev, A. Latyshev, Yu. Kovneristy˘ı, T. Turaeva, V. Vavilova, O. Ovchinnikov, V. Selivanov, and O. Serbin, “Mechanism of photon activation of solid-state processes,” Khim. Vys. Energ. 39(6), 455–461 (2005).
8. P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112, 18737–18753 (2008).
9. V. Ievlev, S. Kushchev, A. Latyshev, O. Ovchinnikov, L. Leonova, M. Smirnov, A. Sinelnikov, A. Vozgor’kov, and M. Ivkova, “Luminescence of thin films of titanium dioxide,” Kondens. Sredy Mezhfaznye Granitsy 14(2), 141–149 (2012).
10. B. Santara, P. K. Giri, K. Imakita, and M. Fujii, “Evidence for Ti interstitial induced extended visible absorption and near infrared photoluminescence from undoped TiO2 nanoribbons: an in situ photoluminescence study,” J. Phys. Chem. C 117(44), 23402–23411 (2013).
11. D. K. Pallotti, L. Passoni, P. Maddalena, F. Di Fonzo, and S. Lettieri, “Photoluminescence mechanisms in anatase and rutile TiO2 ,” J. Phys. Chem. C 121, 9011–9021 (2017).
12. X. Wang, Z. Feng, J. Shi, G. Jia, S. Shen, J. Zhou, and C. Li, “Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition,” Phys. Chem. Chem. Phys. 12, 7083–7090 (2010).
13. A. I. Ekimov, I. A. Kudryavtsev, M. G. Ivanov, and A. L. Efros, “Spectra and decay kinetics of radiative of recombination in CdS microcrystals,” J. Lumin. 46, 83–95 (1990).
14. V. Smyntyna, V. Skobeeva, and N. Malushin, “The nature of emission centers in CdS nanocrystals,” Radiat. Meas. 42, 693–696 (2007).
15. V. Smyntyna, B. Semenenko, V. Skobeeva, and N. Malushin, “Photoactivation of luminescence in CdS nanocrystals,” Beilstein J. Nanotechnol. 5, 355–359 (2014).
16. V. Ievlev, K. Solntsev, A. Sinelnikov, and S. Soldatenko, “Orientation and substructure of chemoepitaxial rutile films,” Materialovedenie 7, 2–7 (2010).
17. N. V. Korolev, M. S. Smirnov, O. V. Ovchinnikov, and T. S. Shatskikh, “Energy structure and absorption spectra of colloidal CdS nanocrystals in gelatin matrix,” Phys. E 68, 159–163 (2015).