ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-09-5-17

УДК: 681.7

Design features of optical-mechanical path of a duplex space optical communication line

For Russian citation (Opticheskii Zhurnal):
Меснянкин Е.П., Потапов С.Л., Потапова Н.И. Особенности построения оптико-механического тракта дуплексной космической оптической линии связи // Оптический журнал. 2024. Т. 91. № 9. С. 5–17. http://doi.org/10.17586/1023-5086-2024-91-09-5-17

 

Mesnjankin E.P., Potapov S.L., Potapova N.I. Design features of optical-mechanical path of a duplex space optical communication line [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 9. P. 5–17. http://doi.org/10.17586/1023-5086-2024-91-09-5-17

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Design diagrams for an optical-mechanical path for duplex laser space communication (with a common receiving and transmitting channel and with separate receiving and transmitting channels). Aim of study. Design of an optical-mechanical path for a space optical communication line using commercially available radiation sources and receivers used in fiber-optic communication lines with due regard for the peculiarities of the propagation of laser radiation in outer space at long distances at which communication is established and the speeds of transmitted information up to 11 Gbit/s. Method. Numerical modeling of the the optical-mechanical path main components, including the Gaussian beams forming and determination of the information radiation output performance in the receiving channel, the formation of radiation from a laser-beacon signal for accurate guidance to the terminal and direction holding during communication. Main results. The design of an optical-mechanical path for a space laser communication line with a guidance and tracking system using transceivers and fiber amplifiers developed for fiber-optic communication lines as transmitting and receiving devices is proposed. The conducted assessments of the accuracy of guidance and tracking show the possibility of a communication session. The combination of the proposed solutions allows for laser communication at distances up to 40,000 km for transmitting and receiving information at speeds up to 11 Gbit/s. Practical significance. The technical solutions proposed in the work make it possible to design space terminals for duplex laser communication with the enhanced weight and dimensional characteristics and performance. The results of the conducted research develop and complement the existing approaches to space communication facilities design, which determines their practical significance.

Keywords:

space laser communication, space optical communication lines, laser radiation, fiber-optic communication line, optical-mechanical path, duplex communication

OCIS codes: 070.0070, 120.0120, 140.0140, 200.0200, 230.0230, 250.0250

References:

1. Казанцев С.Г. Лазерные технологии для телекоммуникационной платформы малого космического аппарата // Вопросы электромеханики. Труды ВНИИЭМ. 2018. Т. 163. № 2. С. 29–47.
 Kazantsev S.G. Laser technologies for telecommunication platform of small spacecraft [in Russian] // Problems of Electromechanics. Proc. VNIIEM. 2018. V. 163. № 2. P. 29–47.
2. Tolker-Nielsen T., Guillen J-C. The first European optical communication terminal in orbit // ESA Bulletin. 1998. № 96. P. 1–3.
3. Keizo N., Yamamoto A. Preliminary design of laser utilizing communications equipment (LUCE) installed on optical inter-orbit communications engineering test satellite (OICETS) // Photonics. 1995. V. 2381. P. 14–26. https://doi.org/10.1117/12.207415
4. Carrizo C., Knapek M., Horwath J., et al. Optical inter-satellite link terminals for next generation satellite constellations // Proc. Soc. Photo-Optical Instrumentation Engineers (SPIE). 2020. V. 11272. Art. id. 1127203. P. 1–11. https://doi.org/10.1117/12.2545629
5. Широбакин С.Е., Крюкова И.В., Чуковский Н.Н. и др. Новая концепция построения бортовой аппаратуры межспутниковых оптических линий связи // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2008. № 2. С. 122–127.
 Shirobakin S.Ye., Kriukova I.V., Chukovskii N.N., et al. A new concept for the construction of on-board equipment for inter-satellite optical communication lines [in Russian] // Herald of Bauman MSTU. Instrument Engineering Ser. 2008. № 2. P. 122–127.
6. Гавриленко С.В., Феоктистов Н.Н., Хегай Д.К. Особенности современного этапа развития оптических линий межспутниковой связи // Военно-космическая академия им. А.Ф. Можайского, СанктПетербург. Изв. вузов. Приборостроение. 2008. Т. 51. № 3. С. 54–60.
 Gavrilenko S.V., Feoktistov N.N., Khegai D.K. Features of the current stage of development of optical inter-satellite communication lines [in Russian] // Mozhaisky Military Space Academy, St. Petersburg. Proc. IHEs. Instrument Engineering. 2008. V. 51. № 3. P. 54–60.
7. Никулин В.И., Яковлев С.В. Разработка и исследование каналов системы космической лазерной связи // XLIII акад. чтения по космонавтике. 2019. Тез. докл. Т. 2. С. 115–116.
 Nikulin V.I., Yakovlev S.V. Design and study of channels of space laser communication systems [in Russian] // XLIII Academic Readings on Cosmonautics. 2019. Abstract of the Conf. Report. V. 2. P. 115–116.
8. Крюкова И.В., Чуковский Н.Н. Проблемы создания аппаратуры для межспутниковых и атмосферных оптических линий связи // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2007. № 1. С. 9–23.
 Kriukova I.V., Chukovskii N.N. Challenges in development of hardware for inter-satellite and atmospheric optical communication lines [in Russian] // Herald of Bauman MSTU. Instrument Engineering Ser. 2007. № 1. P. 9–23.
9. Горбуленко Е.А., Меснянкин Е.П., Потапов C.Л. и др. Разработка оптико-механического тракта для дуплексной лазерной космической связи // Сб. научн. статей. XII Междунар. научно-техн. и научно-методическая конф. Актуальные проблемы инфотелекоммуникаций в науке и образовании (АПИНО 2023) в 4 т. / Под. ред. Макаренко С.И. СПб.: СПбГУТ, 2023. Т. 1. С. 349–354.
 Gorbulenko Ye.A., Mesnjankin E.P., Potapov S.L., et al. Design of optical-mechanical path for duplex laser space communication [in Russian] // Collection of Research Papers. XII Intern. Scientific and Technical and Scientific and Methodical Conf. Current Problems of Infotelecommunications in Science and Education (APINO 2023) in 4 vs. // Ed. Makarenko S.I. / St.
Petersburg: St. Petersburg State University of Telecommunications, 2023. V. 1. P. 349–354.
10. Sanmukh Kaur, Vishakha Tyagi, Anurupa Lubana. Оптимизация производительности межспутниковой оптической беспроводной системы с использованием линейно поляризованных мод [in English] // Оптический журнал. 2021. Т. 88. № 10. С. 39–49. https:// doi.org/10.17586/1023-5086-2021-88-10-39-49
 Sanmukh Kaur, Vishakha Tyagi, Anurupa Lubana. Performance optimization of inter-satellite optical wireless system using linearly polarized modes // J. Opt. Technol. 2021. V. 88. № 10. P. 579–586. https:// doi.org/10.1364/JOT.88.000579
11. Страхов С.Ю., Трилис А.В., Сотникова Н.В. Особенности передающих телескопов для систем лазерной связи // Оптический журнал. 2021. Т. 88. № 5. С. 52–59. http://doi.org/10.17586/1023-5086-2021-88-05-52-59
 Strakhov S.Yu., Trilis A.V., Sotnikova N.V. Specifics of transmitting telescopes for laser communication systems // J. Opt. Technol. 2021. V. 88. № 5. P. 264–269. https://doi.org/10.1364/JOT.88.000264
12. Карцан И.Н. Концепция развития межспутниковой лазерной связи // Сибирский аэрокосмический журнал. 2023. Т. 24. № 2. С. 247–259. https://doi.org/10.31772/2712-8970-2023-24-2-247-259
 Kartsan I.N. Development concept of inter-satellite laser communication [in Russian] // Sibirian Aerospace J. 2023. V. 24. № 2. P. 247–259. https://doi.org/10.31772/2712-8970-2023-24-2-247-259
13. Boroson D.M., Bondurant R.S., Scozzafava J.J. Overview of high rate deep space laser communications options // Proc. SPIE. 2004. V. 5338. https://doi.org/10.1117/12.543010
14. Khatri F.I., Boroson D.M., Murphy D.V., et al. Link analysis of Mars–Earth optical communications system // Proc. SPIE. 2004. V. 5338. https://doi.org/10.1117/12.543009
15. Boroson D.M., Bondurant R.S., Murphy D.V. LDORA: A novel laser communications receiver array architecture // Proc. SPIE. 2004. V. 5338. https://doi.org/10.1117/12.543012
16. Boroson D.M., Scozzafava J.J., Murphy D.V., et al. The lunar laser communications demonstration (LLCD) // 3rd IEEE Intern. Conf. Space Mission Challenges for Inform. Technol. 2009. https://doi.org/10.1109/SMC-IT.2009.57
17. Robinson B.S., Boroson D.M., Burianek D.A., et al. The lunar laser communications demonstration // Intern. Conf. Space Optical Systems and Applications. May 2011. https://doi.org/10.1109/ICSOS.2011.5783709
18. Оптический трансивер LS48-A3L-TC-N [Электронный ресурс]. Режим доступа: https://componentltd.ru/catalog/sfp-moduli/opticheskiy-transiver-ls48-a3l-tc-n/ (дата обращения: 15.02.2023).
 Optical transceiver LS48-A3L-TC-N [Electronic resource]. Access mode: https://componentltd.ru/catalog/sfp-moduli/opticheskiy-transiver-ls48-a3l-tc-n/(accessed 15.02.2023).
19. Убайдуллаев Р.Р. Протяженные ВОЛС на основе EDFA // LIGHTWAVE Russian Edition. 2003. № 1. С. 22–28.
 Ubaidullaev R.R. EDFA-based extended FOCL [in Russian] // LIGHTWAVE Russian Edition. 2003. № 1. P. 22–28.