ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-03-5-31

УДК: 535.8+004.383.5+004.383.8+004.93'12

Optical diffractive image correlators: A brief history and newest achievements. Review

For Russian citation (Opticheskii Zhurnal):

Стариков Р.С. Оптические дифракционные корреляторы изображений: краткий очерк развития и новейшие достижения. Обзор // Оптический журнал. 2025. Т. 92. № 3. С. 5–31. http://doi.org/10.17586/1023-5086-2025-92-03-5-31

 

Starikov R.S. Optical diffractive image correlators: A brief history and newest achievements. Review [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 5–31. http://doi.org/10.17586/1023-5086-2025-92-03-5-31

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. Review of works in the field of creation and application of optical diffraction correlators of two-dimensional spatial signals. Objective of the work. Systematization of information on methods and systems of information processing based on the use of optical diffraction correlators. Method. The methods considered in the review are based on the possibilities of forming and filtering the spatial spectrum of images in optical systems. Main results. A review of works in the field of optical diffractive image correlators is presented. Articles devoted to the topic under consideration are presented sequentially according to chronology and areas of application. The most important, in the opinion of the author of this review, results achieved in this direction are discussed. Practical significance. The review will be useful both for researchers working in the fields of photonics and optical information processing, and for readers specializing in related areas.

Keywords:

optical correlators, optical information processing, pattern recognition, optical-digital systems, spatial filtering, holography, light modulation

Acknowledgements:

this work was funded by the Russian Foundation for Basic Research (project № 20-12-50315)

OCIS codes: 070.4550, 070.5010, 100.1160, 100.3005, 100.3008, 100.4550, 100.5010, 100.4996, 200.4260

References:

1. Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung [auf Deutsch] // Archiv fur Mikroskopische Anatomie. 1873. № 9. P. 413. https://doi.org/10.1007/BF02956173
2. Porter A. XII. On the diffraction theory of microscopic vision // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1906. V. 11. № 61. P. 154. https://doi.org/10.1080/14786440609463433
3. Duffieux P. L'Intégrale de Fourier et ses Applications à l'Optique [en français]. Faculté des Sciences Besançon, Chez l'Auteur, France, 1946. 232 p.
4. Elias P. Optics and communication theory // JOSA. 1953. V. 43. № 4. P. 229. https://doi.org/10.1364/JOSA. 43.000229
5. O'Neill E. Spatial filtering in optics // IRE. Trans. Informat. Theory. 1956. № 2. P. 56. https://doi.org/10.1109/TIT.1956.1056785
6. Cutrona L., Porcello L., Leith E., et al. Optical data processing and filtering systems // IEEE Trans. Inf. Th. 1960. V. 6. № 3. P. 386. https://doi.org/10.1109/tit.1960.1057566
7. McLachlan D. The role of optics in applying correlation functions to pattern recognition // JOSA. 1962. V. 52. № 4. Р. 454. https://doi.org/10.1364/josa.52.000454
8. Marechal A. in Optical Processing of Information / Eds. Pollack D.K., Koester C.J., Tippett J.T. Spartan. Baltimore, 1963. 286 p.
9. Lugt A. Signal detection by complex spatial filtering // IEEE Trans. Inf. Th. 1964. V. 10. № 2. P. 139–145. https://doi.org/10.1109/TIT.1964.1053650
10. Weaver C., Goodman J. Technique for optically convolving two functions // Appl. Opt. 1966. V. 5. P. 1248. https://doi.org/10.1364/AO.5.001248
11. Rau J. Detection of differences in real distributions // JOSA. 1966. V. 56. P. 1490. https://doi.org/10.1364/ JOSA.56.001490
12. Lowenthal S., Werts A. Filtration of spacial sequences in incoherent light with aid of holograms // Comptes rendus hebdomadaires des seances de l'Académie des sciences (France). Serie B. 1968. V. 266. № 9. P. 542.
13. Lohmann A. Matched filtering with self-luminous objects // Appl. Opt. 1968. V. 7. P. 561_1. https://doi.org/10.1364/AO.7.0561_1
14. Bykovsky Yu., Markilov A., Smazheliuk M., et al. Optical computing by double transformation of spatial coherence of light // Proc. SPIE. 1988. V. 963. P. 354. https://doi.org/10.1117/12.947913
15. Pe’er A., Wang D., Lohmann A., et al. Optical correlation with totally incoherent light // Opt. Lett. 1999. V. 24. P. 1469. https://doi.org/10.1364/OL.24.001469
16. Selected papers on optical correlators / Ed. Suganda Jutamulia // SPIE Volume MS76 ISBN: 9780819412935. 1993. 726 p.
17. Selected papers on optical pattern recognition using joint transform correlation / Ed. Alam M.S. // SPIE Volume MS157 ISBN: 9780819434708. 1999. 658 p.
18. Brown B., Lohmann A. Complex spatial filtering with binary masks // Appl. Opt. 1966. V. 5. P. 967. https://doi.org/10.1364/AO.5.000967
19. Kozma A., Kelly D. Spatial filtering for detection of signals submerged in noise // Appl. Opt. 1965. V. 4. P. 387. https://doi.org/10.1364/AO.4.000387
20. Caulfield H.-J., Maloney W. Improved discrimination in optical character recognition // Appl. Opt. 1969. V. 8. P. 2354. https://doi.org/10.1364/AO.8.002354
21. Casasent D., Psaltis D. Position, rotation, and scale invariant optical correlation // Appl. Opt. 1976. V. 15. P. 1795. https://doi.org/10.1364/AO.15.001795
22. Casasent D., Furman A. Sources of correlation degradation // Appl. Opt. 1977. V. 16. P. 1652. https://doi.org/10.1364/AO.16.001652
23. Casasent D., Psaltis D. New optical transforms for pattern recognition // Proc. IEEE. 1977. V. 65. № 1. P. 77. https://doi.org/10.1109/PROC.1977.10432
24. Vijaya Kumar B.V.K., Casasent D. Space-blur bandwidth product in correlator performance evaluation // JOSA. 1980. V. 70. P. 103. https://doi.org/10.1364/JOSA.70.000103
25. Hester C., Casasent D. Multivariant technique for multiclass pattern recognition // Appl. Opt. 1980. V. 19. P. 1758. https://doi.org/10.1364/AO.19.001758
26. Hsu Y., Arsenault H.-H. Optical pattern recognition using circular harmonic expansion // Appl. Opt. 1982. V. 21. P. 4016. https://doi.org/10.1364/AO.21. 004016
27. Horner J. Light utilization in optical correlators // Appl. Opt. 1982. V. 21. P. 4511. https://doi.org/10.1364/AO.21.004511
28. Flannery D., Horner J. Fourier optical signal processors // Proc. IEEE. 1989. V. 77. № 10. P. 1511–1527. https://doi.org/10.1109/5.40666
 Флэннери Д., Хорнер Д. Оптические фурье-процессоры сигналов // ТИИЭР. 1989. Т. 77. № 10. С. 138

29. Gara A. Real-time tracking of moving objects by optical correlation // Appl. Opt. 1979. V. 18. P. 172. https:// doi.org/10.1364/AO.18.000172
30. Bykovsky Yu., Larkin A., Markilov A., et al. Holographic processing of track chamber data // Nucl. Instr. and Methods. 1975. V. 131. № 1. P. 129–132. https://doi.org/10.1016/0029-554X(75)90367-5
31. Duthie J., Upatnieks J. Compact real-time coherent optical correlators // Opt. Eng. 1984. V. 23. Р. 230107. https://doi.org/10.1117/12.7973243
32. Yu F.T.S., Lu X. A real-time programmable joint transform correlator // Opt. Commun. 1984. V. 52. P. 10. https://doi.org/10.1016/0030-4018(84)90065-8
33. Casasent D. Hybrid optical/digital image pattern recognition: A review // Proc. SPIE. 1985. V. 528. P. 64. https://doi.org/10.1117/12.946407
34. Gregory D., Kirsch J., Loudin J. Optical correlators: Optical computing that really works // Proc. SPIE. 1990. V. 1296. P. 2. https://doi.org/10.1117/12.21249
35. Yu F.T.S., Jutamulia S., Lin T., et al. Adaptive realtime pattern recognition using a liquid crystal TV based joint transform correlator // Appl. Opt. 1987. V. 26. P. 1370. https://doi.org/10.1364/AO.26.001370
36. Florence J., Gale R. Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane // Appl. Opt. 1988. V. 27. P. 2091. https://doi.org/10.1364/AO.27.002091
37. Sloan J., Holloway Jr.L. A self-serving optical correlator for tracking // Proc. SPIE. 1990. V. 1151. P. 307. https://doi.org/10.1117/12.962231
38. Lindberg P., Hester C. Challenge to demonstrate an optical pattern recognition system // Proc. SPIE. 1990. V. 1297. P. 72. https://doi.org/10.1117/12.21299
39. Washwell E., Gebelein R., Gheen G., et al. Miniature hybrid optical correlators: Device and system issues // Proc. SPIE. 1990. V. 1297. P. 64. https://doi.org/10.1117/12.21298
40. Strojnik M., Shumate M., Hartman R., et al. Miniaturized optical correlator // Proc. SPIE. 1990. V. 1347. P. 186. https://doi.org/10.1117/12.23408
41. Fielding K., Horner J., Makekau C. Optical fingerprint identification by binary joint transform correlation // Opt. Eng. 1991. V. 30. P. 1958. https://doi.org/10.1117/12.56030
42. Gebelein R., Connely S., Foo L. Advances in the optical design of miniaturized optical correlators // Proc. SPIE. 1991. V. 1564. P. 452. https://doi.org/10.1117/12.49732
43. Ryan V., Fielding K. Position-, scale-, and rotation-invariant photorefractive correlator // Proc. SPIE. 1991. V. 1564. P. 86. https://doi.org/10.1117/12.49699
44. Nekrasov V., Zborovsky A., Ivanov B., et al. Real-time coherent optical correlator for machine vision systems // Opt. Eng. 1992. V. 31. P. 789. https://doi.org/10.1117/12.56141
45. Curtis K., Psaltis D. Multichannel disk-based optical correlator // Proc. SPIE. 1993. V. 2026. P. 48. https://doi.org/10.1117/12.163602
46. Young R., Chatwin C., Scott B. High-speed hybrid optical/digital correlator system // Opt. Eng. 1993. V. 32. P. 2608. https://doi.org/10.1117/12.146387
47. Karins J., Mills S., Szegedi N., et al. Miniature ruggedized optical correlator for flight testing // Proc. SPIE. 1994. V. 2237. P. 48. https://doi.org/10.1117/12.169454
48. Bains S. Miniature optical correlator fits inside a PC // Laser Focus World. 1995. V. 31. № 12. P. 17. https://www.laserfocusworld.com/detectors-imaging/ article/16553331/optical-processing-miniature-opticalcorrelator-fits-inside-a-pc
49. Mendlovic D., Deutsch M., Ferreira C., et al. Singlechannel polychromatic pattern recognition by the use of a joint-transform correlator // Appl. Opt. 1996. V. 35. P. 6382. https://doi.org/10.1364/AO.35.006382
50. Hartman R., Farr K., McColgan M.W., et al. Correlation at sea // Proc. SPIE. 1997. V. 3073. P. 156. https://doi.org/10.1117/12.270360
51. O'Callaghan M., Ward D., Perlmutter S., et al. A highly integrated single-chip optical correlator // Proc. SPIE. 1998. V. 3466. P. 157. https://doi.org/10.1117/12.326778
52. Chao T.-H., Reyes G., Park Y. Grayscale optical correlator // Proc. SPIE. 1998. V. 3386. P. 60. https://doi.org/10.1117/12.304790
53. Carrott D., Mallaley G., Dydyk R., et al. Thirdgeneration miniature ruggedized optical correlator (MROCТМ) module // Proc. SPIE. 1998. V. 3386. P. 38. https://doi.org/10.1117/12.304786
54. Chao T.-H., Reyes G., Zhou H. Automatic target recognition field demonstration using a grayscale optical correlator // Proc. SPIE. 1999. V. 3715. P. 399. https://doi.org/10.1117/12.341323
55. Chao T.-H., Zhou H., Reyes G. 512×512 high-speed grayscale optical correlator // Proc. SPIE. 2000. V. 4043. P. 40. https://doi.org/10.1117/12.381617
56. Chao T.-H., Zhou H., Reyes G. Grayscale optical correlator for real-time onboard ATR // Proc. SPIE. 2001. V. 4387. P. 10. https://doi.org/10.1117/12.421138
57. Chao T.-H., Zhou H., Reyes G. Spacecraft navigation using a grayscale optical correlator // Proc. SPIE. 2002. V. 4734. P. 108. https://doi.org/10.1117/12.458405
58. Hartman R., Farr K. Demonstration of the ULTORТМ target recognition and tracking system // Proc. SPIE. 2003. V. 5106. P. 30. https://doi.org/10.1117/12.501400
59. Demoli N., Šariri K., Stanić Z., et al. Toolmarks identification using SEM images in an optoelectronic correlator device // Optik. 2004. V. 115. P. 487. https://doi.org/10.1078/0030-4026-00404
60. Ewing T., Serati S., Bauchert K. Optical correlator using four kilohertz analog spatial light modulators // Proc. SPIE. 2004. V. 5437. P. 123. https://doi.org/10.1117/12.547404
61. Tchernykh V., Dyblenko S., Janschek K., et al. Airborne test results for smart pushbroom imaging system with optoelectronic image correction // Proc. SPIE. 2004. V. 5234. P. 550. https://doi.org/10.1117/12.510712
62. Vijaya Kumar B.V.K. Tutorial survey of composite filter designs for optical correlators // Appl. Opt. 1992. V. 31. P. 4773. https://doi.org/10.1364/AO.31.004773
63. Vijaya Kumar B.V.K., Mahalanobis A., Juday R. Correlation pattern recognition. Cambridge, U.K.: Cambridge University Press, 2005. 390 p. ISBN: 9780511541087. https://doi.org/10.1017/CBO9780511541087
64. Burcham J., Vachon J. Cueing, tracking, and identification in a maritime environment using the ULTORTM optical processor // Proc. SPIE. 2005. V. 5780. P. 164. https://doi.org/10.1117/12.604063
65. Burcham J., Balch M., Granade S. A correlator-based video sensor for docking with the Hubble Space Telescope // Proc. SPIE. 2005. V. 5798. P. 130. https://doi.org/10.1117/12.606021
66. Chao T.-H., Lu T., Zhou Hanying. Recent progress on grayscale optical correlator for automatic target recognition // Proc. SPIE. 2006. V. 6245. P. 624503. https://doi.org/10.1117/12.673441

67. Butt J., Wilkinson T. Binary phase only reference for invariant pattern recognition with the joint transform correlator // Proc. SPIE. 2006. V. 6234. P. 62340J. https://doi.org/10.1117/12.666469
68. Heifetz A., Pati G., Shen J., et al. Shift-invariant real-time edge-enhanced vander lugt correlator using video-rate compatible photorefractive polymer // Appl. Opt. 2006. V. 45. P. 6148. https://doi.org/10.1364/AO.45.006148
69. Guo F., Wang H., Li L., et al. Infrared telephoto lens design of hybrid optoelectronic joint transform correlator // Proc. SPIE. 2007. V. 6834. P. 68343F. https://doi.org/10.1117/12.757581
70. Ni K., Qu Z., Cao L., et al. High accurate volume holographic correlator with 4000 parallel correlation channels // Proc. SPIE. 2007. V. 6827. P. 68271J. https://doi.org/10.1117/12.756670
71. Bergeron A., Bourqui P., Harnisch B. Lightweight compact optical correlator for spacecraft docking // Proc. SPIE. 2007. V. 6739. P. 67390E. https://doi.org/10.1117/12.738183
72. Aran A., Nishchal N., Beri V., et al. Log-polar transform-based wavelet-modified maximum average correlation height filter for distortion invariance in a hybrid digital-optical correlator // Appl. Opt. 2007. V. 46. P. 7970. https://doi.org/10.1364/AO.46.007970
73. Chao T.-H., Lu T. Grayscale optical correlator for CAD/CAC applications // Proc. SPIE. 2008. V. 6977. P. 697704. https://doi.org/10.1117/12.785873
74. Xiao G., Zhou P., Li X., et al. A novel compact parallel optical correlator // Proc. SPIE. 2009. V. 7513. P. 75131V. https://doi.org/10.1117/12.837947
75. Watanabe E., Naito A., Kodate K. Ultra-high-speed compact optical correlation system using holographic disc // Proc. SPIE. 2009. V. 7442. P. 74420X. https://doi.org/10.1117/12.828507
76. Chao T.-H., Lu T. Automatic target recognition (ATR) performance improvement using integrated grayscale optical correlator and neural network // Proc. SPIE. 2009. V. 7340. P. 734003. https://doi.org/10.1117/12.820948
77. Birch P., Gardezi A., Young R., et al. Volume holographic MACH correlator // Proc. SPIE. 2010. V. 7696. P. 76961L. https://doi.org/10.1117/12.848705
78. Yamamoto S., Kuboyama H., Arai S., et al. Compact slot-in-type optical correlator // Proc. SPIE. 2010. V. 7723. P. 77230B. https://doi.org/10.1117/12.853419
79. Lin T., Lu T., Braun H., et al. Optimization of a multistage ATR system for small target identification // Proc. SPIE. 2010. V. 7696. P. 76961Y. https://doi.org/10.1117/12.858165
80. Zeng X., Inoue T., Fukuchi N., et al. Parallel lensless optical correlator based on two phase-only spatial light modulators // Opt. Exp. 2011. V. 19. P. 12594. https://doi.org/10.1364/OE.19.012594
81. Chao T.-H., Lu T. Autonomous learning approach for automatic target recognition processor // Proc. SPIE. 2011. V. 8055. P. 805502. https://doi.org/10.1117/12.886145
82. Harasthy T., Ovseník Ľ., Turán J. Current summary of the practical using of optical correlators // Acta Electrotechn. Informat. 2012. V. 12. № 4. P. 30. https://doi.org/10.2478/v10198-012-0042-2
83. Manzur T., Zeller J., Serati S. Optical correlator based target detection, recognition, classification, and tracking // Appl. Opt. 2012. V. 51. P. 4976. https://doi.org/10.1364/AO.51.004976
84. Chao T.-H., Lu T. High-speed optical correlator with custom electronics interface design // Proc. SPIE. 2013. V. 8748. P. 874803. https://doi.org/10.1117/12.2018262
85. Watanabe E., Ikeda K., Kodate K. High-speed holographic correlation system for video identification on the internet // Proc. SPIE. 2013. V. 9042. P. 90420L. https://doi.org/10.1117/12.2038136
86. Xu P., Hong C., Cheng G., et al. Planar optical correlators integrated with binary optical lens // Opt. Exp. 2015. V. 23. P. 6773. https://doi.org/10.1364/OE.23.006773
87. Monjur M., Tseng S., Fouda M., et al. Experimental demonstration of the hybrid opto-electronic correlator for target recognition // Appl. Opt. 2017. V. 56. P. 2754. https://doi.org/10.1364/AO.56.002754
88. Ikeda K., Suzuki H., Watanabe E. Optical correlationbased cross-domain image retrieval system // Opt. Lett. 2017. V. 42. P. 2603. https://doi.org/10.1364/OL.42.002603
89. Jridi M., Napoléon T., Alfalou A. One lens optical correlation: Application to face recognition // Appl. Opt. 2018. V. 57. P. 2087. https://doi.org/10.1364/AO.57.002087
90. Gamboa J., Fouda M., Shahriar S. Demonstration of shift, scale, and rotation invariant target recognition using the hybrid opto-electronic correlator // Opt. Exp. 2019. V. 27. P. 16507. https://doi.org/10.1364/OE.27.016507
91. The multiply and Fourier transform unit: A microscale optical processor. Last Updated: J. Wilson, 2020. https://www.optalysys.com/
92. Meng X., Gao Y., Liu X. Computer vision aided optical correlator for SAR target recognition // IEEE IGARSS 2020. 2020. P. 1620. https://doi.org/10.1109/ IGARSS39084.2020.9324505
93. Photonic Computing for Massively Parallel AI March 2021 A White Pages https://www.lighton.ai 94. Dong J., Rafayelyan M., Krzakala F., et al. Optical reservoir computing using multiple light scattering for chaotic systems prediction // IEEE J. Select. Topics in Quant. Electron. 2020. V. 26. P. 7701012. https://doi. org/10.1109/JSTQE.2019.2936281
95. Gamboa J., Hamidfar T., Shen X., et al. Elimination of optical phase sensitivity in a shift, scale, and rotation invariant hybrid opto-electronic correlator via off-axis operation // Opt. Exp. 2023. V. 31. P. 5990. https://doi.org/10.1364/OE.484149
96. Shen X., Gamboa J., Hamidfar T., et al. Speed invariant opto-atomic spatio-temporal holographic correlator for automatic event recognition using the mellin transform // CLEO 2024 Technical Digest. 2024. JTh2A.186. https://doi.org/10.1364/CLEO_AT.2024. JTh2A.186
97. McClain Jr.J., Gregory D. Complex spatial light modulators in optical correlators // Proc. SPIE. 1999. V. 3715. P. 39. https://doi.org/10.1117/12.341294
98. Кулешов А., Шубников Е. Влияние нелинейности среды и пространственных ограничений фильтра на параметры сигнала в голографическом корреляторе // Опт. и спектрос. 1986. T. 60. № 3. C. 606–609.
 Kuleshov A., Shubnikov E. Influence of the medium nonlinearity and spatial limitations of the filter on the parameters of the signal in a holographic correlator [in Russian] // Opt. Speсtr. 1986. V. 60. № 3. P. 606–609.
99. Javidi B. Nonlinear joint power spectrum based optical correlation // Appl. Opt. 1989. V. 28. P. 2358. https://doi.org/10.1364/AO.28.002358
100. Alam M. Karim M. Fringe-adjusted joint transform correlation // Appl. Opt. 1993. V. 32. P. 4344. https://doi.org/10.1364/AO.32.004344
101. Inbar H., Mendlovic D., Marom E. Error-diffusion binarization for joint transform correlators // Appl. Opt. 1993. V. 32. P. 707. https://doi.org/10.1364/AO.32.000707

102. Fisher J., Principe J. A nonlinear extension of the MACE filter // Neur. Netw. 1995. V. 8. P. 1131. https:// doi.org/10.1016/0893-6080(95)00060-7
103. Rosen J. Three-dimensional optical Fourier transform and correlation // Opt. Lett. 1997. V. 22. P. 964. https://doi.org/10.1364/OL.22.000964
104. Arsenault H.-H., García-Martínez P. Intensityinvariant nonlinear filtering for detection in camouflage // Appl. Opt. 2005. V. 44. P. 5483. https://doi. org/10.1364/AO.44.005483
105. Patnaik R., Casasent D. Automated distortion-invariant filter synthesis and training set selection (auto-Minace) // Proc. SPIE. 2006. V. 6245. Р. 624507. https://doi.org/10.1117/12.673443
106. Patnaik R., Casasent D. MSTAR object classification and confuser and clutter rejection using Minace filters // Proc. SPIE. 2006. V. 6234. Р. 62340S. https:// doi.org/10.1117/12.663127
107. Casasent D., Patnaik R. Minace filter tests on the Comanche IR database // Proc. SPIE. 2007. V. 6574. Р. 65740H. https://doi.org/10.1117/12.719069
108. Casasent D., Patnaik R. Analysis of kernel distortion-invariant filters // Proc. SPIE. 2007. V. 6764. Р. 67640Y. https://doi.org/10.1117/12.734820
109. Kerekes R., Vijaya Kumar B.V.K. Selecting a composite correlation filter design: A survey and comparative study // Opt. Eng. 2008. V. 47. Р. 067202. https:// doi.org/10.1117/1.2943217
110. Bolme D., Beveridge J., Draper B., et al. Visual object tracking using adaptive correlation filters // 2010 IEEE CVPR. 2010. P. 2544. https://doi.org/10.1109/CVPR.2010.5539960
111. Widjaja J. Wavelet filter for improving detection performance of compression-based joint transform correlator // Appl. Opt. 2010. V. 49. P. 5768. https://doi.org/10.1364/AO.49.005768
112. Jeong M.-H. Color pattern recognition with recombined single input channel joint transform correlator // J. Opt. Soc. Korea. 2011. V. 15. P. 140. https://doi.org/10.3807/JOSK.2011.15.2.140
113. Alam M., Goh S., Dacharaju S. Three-dimensional color pattern recognition using fringe-adjusted joint transform correlation with CIE lab coordinates // IEEE Trans. Instr. Measur. 2010. V. 59. P. 2176. https://doi.org/10.1109/TIM.2009.2031384
114. Alkandri A., Gardezi A., Bangalore N., et al. Automatic parameter adjustment of difference of Gaussian (DoG) filter to improve OT-MACH filter performance for target recognition applications // Proc. SPIE. 2011. V. 8185. P. 81850M. https://doi.org/
10.1117/12.897309
115. Alkandri A., Bangalore N., Gardezi A., et al. Improving OT-MACH filter performance for target recognition applications with the use of a Rayleigh distribution filter // Proc. SPIE. 2012. V. 8398. P. 83980D. https://doi.org/10.1117/12.918756
116. Sidike P., Alam M. Spectral fringe-adjusted joint transform correlation based efficient object classification in hyperspectral imagery // Proc. SPIE. 2013. V. 8748. P. 87480T. https://doi.org/10.1117/12.2018256
117. Galoogahi H., Sim T., Lucey S. Multi-channel correlation filters // 2013 IEEE ICCV. 2013. P. 3072. https:// doi.org/10.1109/ICCV.2013.381
118. Campos J., Moreno I., Nicolas J., et al. Uses of spatial  light modulators for colour optical processing // Proc. SPIE. 2013. V. 8833. P. 88330A. https://doi.org/10.1117/12.2023641
119. Diaz-Ramirez V., Picos K., Kober V. Target tracking in nonuniform illumination conditions using locally adaptive correlation filters // Opt. Commun. 2014. V. 323. P. 32. https://doi.org/10.1016/j.optcom.2014.02.063
120. Vijaya Kumar B.V.K., Fernandez J., Rodriguez A., et al. Recent advances in correlation filter theory and application // Proc. SPIE. 2014. V. 9094. P. 909404. https://doi.org/10.1117/12.2051719
121. Alam M., Khoury J., Banerjee P., et al. Performance evaluation of optimal filters for target detection using SAR imagery // Proc. SPIE. 2014. V. 9094. P. 90940C. https://doi.org/10.1117/12.2054358
122. Gardezi A., Qureshi T., Alkandri A., et al. Comparison of spatial domain optimal trade-off maximum average correlation height (OT-MACH) filter with scale invariant feature transform (SIFT) using images with poor contrast and large illumination gradient // Proc. SPIE. 2015. V. 9477. P. 947706. https://doi.org/10.1117/12.2177451
123. Diaz-Ramirez V., Cuevas A., Kober V., et al. Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization // Opt. Commun. 2015. V. 338. P. 77. https://doi.org/10.1016/j.optcom.2014.10.038
124. Lu T., Chao T.-H., Chen K., et al. Cross-correlation and image alignment for multi-band IR sensors // Proc. SPIE. 2016. V. 9845. P. 984505. https://doi.org/ 10.1117/12.2224694
125. Gardezi A., Umer T., Butt F., et al. Vehicle monitoring under vehicular ad-hoc networks (VANET) parameters employing illumination invariant correlation filters for the Pakistan motorway police // Proc. SPIE. 2016. V. 9845. P. 984508. https://doi.org/
10.1117/12.2228295
126. He E., Fernandez J., Vijaya Kumar B.V.K., et al. Masked correlation filters for partially occluded face recognition // 2016 IEEE ICASSP. 2016. P. 1293. https://doi.org/10.1109/icassp.2016.7471885
127. Gaxiola L., Diaz-Ramirez V., Tapia J., et al. Target tracking with dynamically adaptive correlation // Opt. Commun. 2016. V. 365. P. 140. https://doi.org/10.1016/j.optcom.2015.11.077
128. Smereka J., Boddeti V., Vijaya Kumar B.V.K., et al. Stacked correlation filters for biometric verification // 2016 IEEE ICASSP. 2016. P. 2104. https://doi. org/10.1109/icassp.2016.7472048
129. Saumard M., El Bouz M., Aron M., et al. Nonparametric kernel smoothing classification to enhance optical correlation decision performances // Proc. SPIE. 2019. V. 10995. P. 109950C. https://doi.org/ 10.1117/12.2518840
130. Akbar N., Tehsin S., Rehman H., et al. Hardware design of correlation filters for target detection // Proc. SPIE. 2019. V. 10995. P. 109950E. https://doi.org/10.1117/12.2519497
131. Banerjee P., Abeywickrema U., Zhou H., et al. Taking correlation from 2D to 3D: Optical methods and performance evaluation // Proc. SPIE. 2019. V. 10995. P. 109950B. https://doi.org/10.1117/12.2520309
132. Picos K., Orozco-Rosas U., Diaz-Ramirez V. Demonstrating the robustness of frequency-domain correlation filters for 3D object recognition applications // Proc. SPIE. 2019. V. 11136. P. 111360O. https://doi.org/10.1117/12.2528944
133. Hernandez-Beltran J., Diaz-Ramirez V., Juarez-Salazar R. Adaptive matched filter for implicit-target recognition: Application in three-dimensional reconstruction // Appl. Opt. 2019. V. 58. P. 8920. https:// doi.org/10.1364/AO.58.008920
134. Akbar N., Tehsin S., Bilal A., et al. Detection of moving human using optimized correlation filters in homogeneous environments // Proc. SPIE. 2020. V. 11400. P. 114000P. https://doi.org/10.1117/12.2559578
135. Contreras-Gonzalez V., Diaz-Ramirez V., JuarezSalazar R. Facial landmark detection and tracking with dynamically adaptive matched filters // J.Electron. Imag. 2020. V. 29. P. 033004. https://doi.org/10.1117/1.JEI.29.3.033004
136. Castro-Valdez A., Álvarez-Borrego J., Solorza-Calderón S. Image correlation by one-dimensional signatures invariant to rotation, position, and scale using the radial Hilbert transform optimized // Appl. Opt. 2020. V. 59. P. D12. https://doi.org/10.1364/AO.381574
137. Diaz-Ramirez V., Juarez-Salazar R. Multiple object tracking in color scenes using composite-matched filtering with complex constrains // Proc. SPIE. 2021. V. 11841. P. 118410J. https://doi.org/10.1117/12. 2594941
138. Gaxiola L., Diaz-Ramirez V., Juarez-Salazar R. Performance evaluation of advanced correlation filters for printed character recognition // Proc. SPIE. 2023. V. 12673. P. 126730D. https://doi.org/10.1117/12.2676178
139. Kumar R., Nishchal N., Alfalou A. Improving the false alarm capability of the extended maximum average correlation height filter // Photonics. 2023. V. 10. P. 1096. https://doi.org/10.3390/photonics10101096
140. Lohmann A., Werlich H. Incoherent matched filtering with Fourier holograms // Appl. Opt. 1971. V. 10. P. 670. https://doi.org/10.1364/ao.10.000670
141. Furman A., Casasent D. Bipolar incoherent optical pattern recognition by carrier encoding // Appl. Opt. 1977. V. 18. P. 660. https://doi.org/10.1364/AO.18.000660
142. Potaturkin O. Incoherent diffraction correlator with a holographic filter // Appl. Opt. V. 18. P. 4203. https://doi.org/10.1364/AO.18.004203
143. Sherman R., Grieser D., Gamble F., et al. Hybrid incoherent optical pattern recognition system // Appl. Opt. 1983. V. 22. P. 3579. https://doi.org/10.1364/AO.22.003579
144. Yu F.T.S. Color image recognition by spectral-spatial matched filtering // Opt. Eng. 1984. V. 23. P. 690. https://doi.org/10.1117/12.7973364
145. Psaltis D., Neifeld M., Yamamura A. Incoherent correlators using optical memory disks // Opt. Lett. 1989. V. 14. P. 429. https://doi.org/10.1364/OL.14.000429
146. Mendlovic D., Zalevsky Z., Konforti N. Joint transform correlator with incoherent output // JOSA A. 1994. V. 11. P. 3201. https://doi.org/10.1364/JOSA A.11.003201
147. Bykovsky Y., Lyubchenko A., Markilov A., et al. Light spectrum and image structure correlator // Proc. SPIE. 1994. V. 2051. P. 969. https://doi.org/10.1117/12.166007
148. Bykovsky Y., Markilov A., Rodin V., et al. Noncoherent correlator with reflective volume holographic filter // Proc. SPIE. 1996. V. 2969. P. 454. https://doi.org/10.1117/12.262677
149. Bykovsky Y., Markilov A., Rodin V., et al. Incoherent holographic bipolar correlator for recognition of nonedge-enhanced images // Proc. SPIE. 1996. V. 2969. P. 635. https://doi.org/10.1117/12.262569
150. Amelyanov S., Bykovsky Y., Eloev E., et al. Incoherent holographic image correlator with 2D acoustooptic deflector as input device // Proc. SPIE. 1999. V. 3900. P. 334. https://doi.org/10.1117/12.364564
151. Родин В., Стариков С. Распознавание объектов по пространственным и спектральным параметрам в дисперсионных голографических корреляторах // Оптический журнал. 2012. Т. 79. № 4. С. 22–27.
 Rodin V., Starikov S. Recognizing objects from the spatial and spectral parameters in dispersion holographic correlators // J. Opt. Technol. 2012. V. 79. № 4. Р. 212–216. https://doi.org/10.1364/JOT.79.000212
152. Andrés P., Climent V., Lancis J., et al. All-incoherent dispersion-compensated optical correlator // Opt. Lett. 1999. V. 24. P. 1331. https://doi.org/10.1364/OL.24.001331
153. Grycewicz T. Lensless joint transform correlator // Opt. Eng. 1997. V. 36. P. 2871. https://doi.org/10.1117/ 1.601471
154. Hermerschmidt A., Osten S., Krüger S., et al. Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution // Proc. SPIE. 2007. V. 6584. P. 65840E. https://doi.org/10.1117/12.722891
155. Lizana A., Moreno I., Márquez A., et al. Time fluctuations of the phase modulation in a liquid crystal on silicon display: Characterization and effects in diffractive optics // Opt. Exp. 2008. V. 16. P. 16711. https://
doi.org/10.1364/OE.16.016711
156. Cheremkhin P., Evtikhiev N., Krasnov V., et al. Reduction of phase temporal fluctuations caused by digital voltage addressing in LC SLM "HoloEye PLUTO VIS" for holographic applications // Proc. SPIE. 2014. V. 9006. P. 900615. https://doi.org/10.1117/12.2037569
157. Goncharov D., Krasnov V., Ponomarev N., et al. Measurement of phase modulation of an amplitude liquid crystal spatial light modulator HoloEye LC 2002 by dual-beam interferometric method // Proc. SPIE. 2018. V. 10558. P. 105580Y. https://doi.
org/10.1117/12.2290043
158. Refregier P. Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency // Opt. Lett. 1991. V. 16. P. 829. https://doi. org/10.1364/ol.16.000829
159. Vijaya Kumar B.V.K., Mahalanobis A., Song S., et al. Minimum squared error synthetic discriminant functions // Opt. Eng. 1992. V. 31. P. 915. https://doi.org/ 10.1117/12.56169
160. Evtikhiev N., Shaulskiy D., Zlokazov E., et al. Variants of minimum correlation energy filters: Comparative study // Proc. SPIE. 2012. V. 8398. P. 83980G. https://doi.org/10.1117/12.919644
161. Evtikhiev N., Starikov S., Shaulskiy D., et al. Invariant correlation filter with linear phase coefficient holographic realization in 4-F correlator // Opt. Eng. 2011. V. 50. P. 065803. https://doi.org/10.1117/1.3592518
162. Shaulskiy D., Evtikhiev N., Zlokazov E., et al. Variants of light modulation for MINACE filter implementation in 4-F correlators // Proc. SPIE. 2015. V. 9598. P. 95980T. https://doi.org/10.1117/12.2190700
163. Семенов Г., Корешев С., Павлов А. и др. Голографическая линза для оптического коррелятора // Опт. и спектрос. 1983. T. 55. № 5. C. 945.
 Semenov G., Koreshev S., Pavlov A., et al. Holographic lens for optical correlator [in Russian] // Opt. Spectros. 1983. V. 55. № 5. P. 945.
164. Ghosh A., Lapis M., Aossey D. Planar integration of joint transform correlators // Electron. Lett. 1991. V. 27. P. 871. https://doi.org/10.1049/el:19910546
165. McAulay A., Wang J. Lensless 2D correlation experiments // Proc. SPIE. 1993. P. 1959. https://doi. org/10.1117/12.160311
166. Reinhorn S., Amitai Y., Friesem A. Compact planar optical correlator // Opt. Lett. 1997. V. 22. P. 925. https://doi.org/10.1364/OL.22.000925
167. Eckert W., Jahns J., Sinzinger S., et al. Design and fabrication of a compact planar-integrated optical correlator // Proc. LEOS ’97. P. 134. https://doi.org/ 10.1109/leos.1997.630555