ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-10-3-14

УДК: 539.216

Photoelectric properties of MIS structures based on HgCdTe nBn with a superlattice in the barrier region

For Russian citation (Opticheskii Zhurnal):

Войцеховский А.В., Дзядух С.М., Горн Д.И., Михайлов Н.Н., Дворецкий С.А., Сидоров Г.Ю., Якушев М.В. Фотоэлектрические свойства МДП-структур на основе HgCdTe nBn со сверхрешёткой в барьерной области // Оптический журнал. 2024. Т. 91 № 10. С. 3–14. http://doi.org/10.17586/1023-5086-2024-91-10-3-14

 

Voitsekhovskii1 A.V., Dzyadukh S.M., Gorn D.I., Mikhailov N.N., Dvoretsky S.A., Sidorov G.Yu., Yakushev M.V. Photoelectric properties of MIS structures based on HgCdTe nBn with a superlattice in the barrier region [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 10. P. 3–14. http://doi.org/10.17586/1023-5086-2024-91-10-3-14

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Application of superlattices as barrier layers in unipolar barrier nBn structures based on n-HgCdTe grown by molecular beam epitaxy. Aim of study. To determine the degree of influence of optical radiation in the infrared range on the electrical characteristics of nBn structures based on HgCdTe, grown by molecular beam epitaxy, with a superlattice in the barrier region. Method. Epitaxial Hg1–xCdxTe films, which are nBn structures with a superlattice in the barrier region, were grown using molecular beam epitaxy. The superlattice of 18 periods in the structure under study included barrier layers 9 nm thick (Hg0.2Cd0.8Te) and wells (HgTe) 2 nm thick. From these films, metal-insulator-semiconductor structures were produced, which were individual mesa structures on a single substrate, obtained by etching. Studies of photoelectric properties were carried out on an automated heterostructure admittance spectroscopy setup, consisting of a Janis non-optical closedcycle helium cryostat with a Lake Shore 335 temperature controller. The study of structure admittance was carried out on an Agilent E4980A setup. The studies were carried out in the absence and presence of infrared light-emitting diode illumination with a wavelength of 940 nm. The sample under study was placed in a vacuum chamber on a cooled table with a hole. Main results. The measurement results presented in this work show that, obviously, illumination with an infrared light-emitting diode has a significant effect on the admittance characteristics of the structure under study. The dependences of electrical capacitance and differential conductivity on voltage observed in experiments, both in the dark and under illumination with an infrared light-emitting diode, cannot be directly interpreted by analogy with the analysis of admittance studies of classical metal-insulator-semiconductor structures. In particular, such effects as complex hysteresis when changing the scan direction when measuring dark characteristics, the frequency dependence of the level of dark capacitance in the enrichment mode, as well as the influence of illumination on the value of the capacitance in the enrichment mode have a form that is significantly different from the case of a classical metal-insulator-semiconductor structure. These effects can be explained by the presence of a superlattice in the barrier layer of the structure, which has its own complex conductivity and affects the complex conductivity of the metalinsulator-semiconductor structure. At the same time, additional research is required to describe in detail the nature of the influence of the superlattice on the electrical properties of barrier structures based on HgCdTe. Practical significance. This work is devoted to the first studies of the photoelectric properties of the structure of nBn structures based on HgCdTe, grown by molecular beam epitaxy, with a superlattice in the barrier region. Taking into account the fact that the use of superlattices in barrier nBn structures based on n-HgCdTe is considered as the most promising way to eliminate the potential barrier for minority charge carriers, the results of this work can form the basis for the development of designs for photosensitive structures in mid-wave infrared and long-wave infrared ranges and the subsequent creation of photodetectors elements. Photoelectric measurements are part of the photosensitive structure development process aimed at creating highly sensitive mid-wave infrared and long-wave infrared photonic detectors.

Keywords:

barrier structure, HgCdTe, nBn, superlattice, molecular beam epitaxy, unipolar structure, photodetector, photoelectric properties, addmittance

Acknowledgements:

this work was supported by the Russian Science Foundation, Project № 23-62-10021, https://rscf.ru/project/23-62-10021/

OCIS codes: 250.5590, 040.4200, 040.3060

References:

1. Chu J., Sher A. Device physics of narrow gap semiconductors. New York: Springer, 2010. 506 p.
2. Rogalski А. Infrared and terahertz detectors. 3 ed.Milton Park: Taylor & Francis, 2019. 1066 p. https://doi.org/10.1201/b21951
3. Kinch M.A. The future of infrared; III–Vs or HgCdTe? // J. Electron. Mater. 2015. V. 44. № 9. P. 2969–2976. https://doi.org/10.1007/s11664-015-3717-5
4. Gu R., Antoszewski J., Lei W., Madni I., Umana-Membrenao G., Faraone L. MBE growth of HgCdTe on GaSb substrates for application in next generation infrared detectors // J. Cryst. Growth. 2017. V. 468. P. 216. https://doi.org/10.1016/j.jcrysgro.2016.12.034
5. Maimon S., Wicks G.W. nBn detector, an infrared detector with reduced dark current and higher operating temperature // Appl. Phys. Lett. 2006. V. 89. P. 151109. https://doi.org/10.1063/1.2360235

6. Shi Q., Zhang S.-K., Wang J.-L., Chu J.-H. Progress on nBn infrared detectors // Infrared Millim. Waves. 2022. V. 41. № 1. P. 139–150. https://doi.org/10.11972/j.issn.1001-9014.2022.01.010
7. Михайлов Н.Н., Варавин В.С., Дворецкий С.А., Менщиков Р.В., Ремесник В.Г., Ужаков И.Н. Рост и характеризация nBn-структур на основе СdхHg1–хTe для фотоприёмников спектрального диапазона 3–5 мкм // Оптический журнал. 2024. Т. 91. № 2. С. 76–87. https:// doi.org/10.17586/1023-5086-2024-91-02-76-87 

Mikhailov N.N., Varavin V.S., Dvoretsky S.A., Menshchikov R.V., Vladimir G. Remesnik V.G., Uzhakov I.N. Growth and characterization of nBn structures based on CdxHg1–хTe for photodetectors in the 3–5 μm spectral range // Journal of Optical Technology. 2024. V. 91. № 2. P. 105–111. https://doi.org/10.1364/JOT.91.000105
8. Itsuno A. M. Bandgap-engineered mercury cadmium telluride infrared detector structures for reduced cooling requirements // Doctoral dissertation. University of Michigan, 2012. 197 p.
9. Burlakov I.D., Kulchitsky N.A., Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Gorn D.I. Unipolar semiconductor barrier structures for infrared photodetector arrays. Review // Journal of Communications Technology and Electronics. 2021. V. 66. № 9. P. 1084–1091. https://doi.org/10.1134/S1064226921090035
10. Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Gorn D.I., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Y. Ch. 6. II-VI Semiconductor-based unipolar barrier structures for infrared photodetector arrays in handbook of II-VI semiconductor-based sensors and radiation detectors. Cham: Springer, 2023. P. 135–154. https://doi.org/10.1134/S1064226921090035
11. Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Yu., Yakushev M.V. Diffusion-limited dark currents in mid-wave infrared HgCdTd-based nBn structures with Al2O3 passivation // J. Phys. D: Appl. Phys. 2020. V. 53. 055107 (6pp). https://doi.org/10.1088/1361-6463/ab5487
12. Войцеховский А.В., Дзядух С.М., Горн Д.И., Михайлов Н.Н., Дворецкий С.А., Сидоров Г.Ю., Якушев М.В. Униполярные барьерные структуры на основе n-HgCdTe со сверхрешётками в качестве барьера. Обзор // Оптический журнал. 2024. Т. 91. № 2. С. 6–22. https://doi.org/10.17586/1023-5086-2024-91-02-6-22 

Voitsekhovskii A.V., Dzyadukh S.M., Gorn D.I., Mikhailov N.N., Dvoretsky S.A., Sidorov G.Yu., Yakushev M.V. Unipolar barrier structures based on n-HgCdTe with superlattices as a barrier. Review // Journal of Optical Technology. 2024. V. 91. № 2. P. 67–76. https://doi.org/10.1364/JOT.91.000067
13. Benyahia D., Martyniuk P., Kopytko M., Antoszewski J., Gawron W., Madejczyk P., Rutkowski J., Gu R., Faraone L. nBn HgCdTe infrared detector with HgTe(HgCdTe)/CdTe SLs barrier // Opt. Quant. Electron. 2016. V. 48. P. 215. https://doi.org/10.1007/ s11082-016-0439-8
14. Izhnin I.I., Kurbanov K.R., Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Y., Yakushev M.V. Unipolar superlattice structures based on MBE HgCdTe for infrared detection // Applied Nanoscience. 2020. № 10. P. 4571–4576. https://doi.org/10.1007/s13204-020-01297-y
15. Zubkov V.I., Yakovlev I.N., Litvinov V.G., Ermachihin A.V., Kucherova O.V., Cherkasova V.N. Analysis of the electrostatic interaction of charges in multiple InGaAs/GaAs quantum wells by admittance-spectroscopy methods // Semiconductors. 2014. V. 48. P. 917–923. https://doi.org/10.1134/S1063782614070227
16. Izhnin I.I., Voitsekhovskii A.V., Nesmelov S.N., Dzyadukh S.M., Dvoretsky S.A., Mikhailov N.N., Sidorov G.Y., Yakushev M.V. Admittance of barrier nanostructures based on MBE HgCdTe // Applied Nanoscience. 2020. № 12. P. 403–409. https://doi.org/10.1007/s13204-020-01636-z
17. Войцеховский А.В., Дзядух С.М., Горн Д.И., Дворецкий С.А., Михайлов Н.Н., Сидоров Г.Ю., Якушев М.В. Определение электрофизических свойств МДП на основе nB(SL)n-структуры из HgCdTe в широком температурном диапазоне // Прикладная физика. 2023. № 5. С. 75–83. https://doi.org/10.51368/ 1996-0948-2023-5-75-83
 Voitsekhovskii A.V., Dzyadukh S.M., Gorn D.I., Dvoretskii S.A., Mikhailov N.N., Sidorov G.Yu., Yakushev M.V. Determination of the electrical properties of MIS based on the nB(SL)n-structure of HgCdTe in a wide temperature range [in Russian] // Applied Physics. 2023. № 5. P. 75–83.
18. Дзядух С.М., Войцеховский А.В., Несмелов С.Н. Особенности поведения дифференциальной емкости МДП-структуры при наличии слоев CdTe в варизонном слое полупроводниковой пленки HgCdTe // Известия высших учебных заведений. Физика. 2013. Т. 56. № 9/2. C. 95–97.
 Dzyadukh S.M., Voitsekhovskii A.V., Nesmelov S.N. Features of the behavior of the differential capacitance MIS structure In the presence of layers of CdTe in variband semiconductor film of HgCdTe // Russian Physics Journal. 2013. V. 56. № 9/2. C. 95–97.
19. Sze S.M. Physics of semiconductor devices: 2nd ed. New York: John Wiley and Sons Ltd., 1981. 868 p.
20. Зубков В.И. Диагностика полупроводниковых наногетероструктур методами спектроскопии адмиттанса. Санкт-Петербург: Элмор, 2007. 220 с.
 Zubkov V.I. Diagnostics of semiconductor nanoheterostructures using admittance spectroscopy methods. Saint Petersburg: Elmor, 2007. 220 p.
21. Izhnin I.I., Nesmelov S.N., Dzyadukh S.M., Voitsekhovskii A.V., Gorn D.I., Dvoretsky S.A., Mikhailov N.N. Admittance investigation of MIS structures with HgTe-based single quantum wells // Nanoscale Research Letters. 2016. V. 11:53. https://doi.org/10.1186/ s11671-016-1276-1